分析 根据垂径定理的推理可判断DE为直径,根据垂径定理得到$\widehat{BE}$=$\widehat{CE}$,设△ABC的外接圆的圆心为O,连结OC、OA,如图,再利用三角形内角和计算出∠BAC=50°,利用圆周角定理得到∠EOC=∠BAC=50°,∠AOC=2∠B=48°,然后计算出∠AOD的度数,再根据$\widehat{AD}$的度数等于它所对的圆心角的度数求解即可.
解答 解:∵DE垂直平分BC,
∴DE为直径,$\widehat{BE}$=$\widehat{CE}$,
设△ABC的外接圆的圆心为O,连结OC、OA,如图,
∵∠B=24°,∠C=106°,
∴∠BAC=180°-24°-106°=50°,
∴∠EOC=∠BAC=50°,
∵∠AOC=2∠B=48°,
∴∠AOD=180°-∠COE-∠AOC=180°-50°-48°=82°,
∴$\widehat{AD}$的度数为82°.
故答案为82.
点评 本题考查了三角形的外接圆与外心:三角形外接圆的圆心是三角形三条边垂直平分线的交点,叫做三角形的外心.解决本题的关键是把求弧的度数转化为求弧所对的圆心角的度数.
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com