精英家教网 > 初中数学 > 题目详情
已知抛物线y=ax2+bx+c的顶点坐标为(2,4).
(Ⅰ)试用含a的代数式分别表示b,c;
(Ⅱ)若直线y=kx+4(k≠0)与y轴及该抛物线的交点依次为D、E、F,且
S△ODE
S△OEF
=
1
3
,其中O为坐标原点,试用含a的代数式表示k;
(Ⅲ)在(Ⅱ)的条件下,若线段EF的长m满足3
2
≤m≤3
5
,试确定a的取值范围.
分析:(Ⅰ)根据抛物线的顶点坐标,可用顶点式二次函数通式来表示出抛物线的解析式,展开后即可得出b、c的表达式;
(Ⅱ)可先联立直线与抛物线的解析式,可得出一个关于x的一元二次方程,那么这个方程的解即为E、F点的横坐标,那么可根据△ODE和△OEF的面积比以及韦达定理来求k的表达式;
(Ⅲ)可根据E、F的坐标,运用坐标系中两点的距离公式表示出m,然后根据韦达定理和m的取值范围来求出a的取值范围.
解答:解:(I)由已知,可设抛物线的顶点式为y=a(x-2)2+4(a≠0),
即y=ax2-4ax+4a+4.
∴b=-4a,c=4a+4;
(II)设E(x1,y1),F(x2,y2),
由方程组
y=kx+4
y=ax2-4ax+4a+4
消去y,
得ax2-(4a+k)x+4a=0  (*),
∴x1+x2=
4a+k
a
①,
x1•x2=4 ②,
又∵
S△ODE
S△OEF
=
1
3

S△ODE
S△ODF
=
1
4

DE
DF
=
1
4

|
x1
x2
|=
1
4

即|x2|=4|x1|,
由②,知x1与x2同号,
∴x2=4x1③,
由②、③,
得x1=1,x2=4;x1=-1,x2=-4,
将上面数值代入①,
4a+k
a
=±5,
解得k=a或k=-9a,
经验证,方程(*)的判别式△>0成立,
∴k=a或k=-9a;
(III)∵m2=(x2-x12+(y2-y12
而(x2-x12=9,
由y1=kx1+4,y2=kx2+4,
得(y2-y12=k2(x2-x12=9k2
∴m2=9(1+k2),
即m=3
1+k2

由已知3
2
≤m≤3
5

2
1+k2
5

即1≤k2≤4,
∴1≤k≤2或-2≤k≤-1,
当k=a时,有1≤a≤2或-2≤a≤-1,
当k=-9a时,有1≤-9a≤2或-2≤-9a≤-1,
即-
2
9
≤a≤-
1
9
1
9
≤a≤
2
9
点评:本题主要考查了二次函数与一元二次方程的关系,以及一元二次方根与系数的关系等知识点.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

如图,已知抛物线y=ax2+bx+c(a≠0)经过A(-2,0),B(0,-4),C(2,-4)三点,且精英家教网与x轴的另一个交点为E.
(1)求抛物线的解析式;
(2)用配方法求抛物线的顶点D的坐标和对称轴;
(3)求四边形ABDE的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知抛物线y=ax2和直线y=kx的交点是P(-1,2),则a=
 
,k=
 

查看答案和解析>>

科目:初中数学 来源: 题型:

2、已知抛物线y=ax2+bx+c的开口向下,顶点坐标为(2,-3),那么该抛物线有(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,已知抛物线y=ax2+bx+c(其中b>0,c<0)的顶点P在x轴上,与y轴交于点Q,过坐标原点O,作OA⊥PQ,垂足为A,且OA=
2
,b+ac=3.
(1)求b的值;
(2)求抛物线的解析式.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•广州)已知抛物线y1=ax2+bx+c(a≠0,a≠c)过点A(1,0),顶点为B,且抛物线不经过第三象限.
(1)使用a、c表示b;
(2)判断点B所在象限,并说明理由;
(3)若直线y2=2x+m经过点B,且于该抛物线交于另一点C(
ca
,b+8
),求当x≥1时y1的取值范围.

查看答案和解析>>

同步练习册答案