精英家教网 > 初中数学 > 题目详情
如图所示的抛物线是二次函数的图象,那么的值是       
﹣1.

试题分析:由图象可知,抛物线经过原点(0,0),
所以a2﹣1=0,解得a=±1,
∵图象开口向下,a<0,
∴a=﹣1.
故答案是﹣1.
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

如图1,已知直线y=x+3与x轴交于点A,与y轴交于点B,抛物线y=-x2+bx+c经过A、B两点,与x轴交于另一个点C,对称轴与直线AB交于点E,抛物线顶点为D.

(1)求抛物线的解析式;
(2)在第三象限内,F为抛物线上一点,以A、E、F为顶点的三角形面积为3,求点F的坐标;
(3)点P从点D出发,沿对称轴向下以每秒1个单位长度的速度匀速运动,设运动的时间为t秒,当t为何值时,以P、B、C为顶点的三角形是直角三角形?直接写出所有符合条件的t值.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

某公司生产的一种健身产品在市场上受到普遍欢迎,每年可在国内、国外市场上全部售完,该公司的年产量为6千件,若在国内市场销售,平均每件产品的利润y1(元)与国内销售数量x(千件)的关系为:y1=若在国外销售,平均每件产品的利润y2(元)与国外的销售数量t(千件)的关系为: y2=
(1)用x的代数式表示t,则t=__________;当0<x≤3时,y2与x的函数关系式为:y2=__________________;当3≤x<________时,y2=100;
(2)当3≤x<6时,求每年该公司销售这种健身产品的总利润w(千元)与国内的销售数量x(千件)的函数关系式,并求此时的最大利润.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

在直角坐标系中,O是坐标原点,抛物线与x轴交与A,B两点(点A在点B的左侧),与y轴相交与点C,如果点M在y轴右侧的抛物线上,,那么点M的坐标是                       

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

某个体户春节前代理销售某种品牌的酒,已知进价为每件40元,生产厂家要求销售价不少于40元,且不大于70元,市场调查发现:若每件以50元销售,平均每天可销售90件,价格每降低1元,平均每天多销售3件,价格每升高1元,平均每天少销售3件.
(1)写出平均每天销售量y(件)与每件销售价x(元)之间的函数关系式,并注明自变量的取值范围;
(2)求出该个体户每天销售这种酒的毛利润W(元)与每件酒的售价x(元)之间的函数关系式,并注明自变量的取值范围(每件的毛利润=售价-进价);
(3)当酒的售价为多少时平均每天的利润最大,最大利润是多少?

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

已知关于x的一元二次方程x2﹣2x+k=0有两个不相等的实数根,则k的取值范围是 _________ 

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如图,抛物线y=ax2+1与双曲线y=的交点A的横坐标是2,则关于x的不等式+ax2+1<0的解集是              

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如图,抛物线y=x2通过平移得到抛物线m,抛物线m经过点B(6,0)和O(0,0),它的顶点为A,以O为圆心,OA为半径作圆,在第四象限内与抛物线y=x2交于点C,连接AC,则图中阴影部分的面积为       

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,在平面直角坐标系中,二次函数y=ax2+c(a<0)的图象过正方形ABOC的三个顶点A.B.C,求ac的值.

查看答案和解析>>

同步练习册答案