精英家教网 > 初中数学 > 题目详情
已知关于x的方程x2-2(m+1)x+m2=0,
(1)当m取什么值时,原方程没有实数根;
(2)对m选取一个合适的非零整数,使原方程有两个实数根,并求这两个实数根的平方和.
分析:(1)要使原方程没有实数根,只需△<0即可,然后可以得到关于m的不等式,由此即可求出m的取值范围;
(2)根据(1)中求得的范围,在范围之外确定一个m的值,再根据根与系数的关系求得两根的平方和.
解答:解:(1)∵方程没有实数根
∴b2-4ac=[-2(m+1)]2-4m2=8m+4<0,
m<-
1
2

∴当m<-
1
2
时,原方程没有实数根;
(2)由(1)可知,m≥-
1
2
时,方程有实数根,
∴当m=1时,原方程变为x2-4x+1=0,
设此时方程的两根分别为x1,x2
则x1+x2=4,x1•x2=1,
∴x12+x22=(x1+x22-2x1x2=16-2=14,
∴当m=1时,原方程有两个实数根,这两个实数根的平方和是14.
点评:此题要求学生能够用根的判别式求解字母的取值范围,熟练运用根与系数的关系求关于两个根的一些代数式的值.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

8、已知关于x的方程x2+kx+1=0和x2-x-k=0有一个根相同,则k的值为(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•绵阳)已知关于x的方程x2-(m+2)x+(2m-1)=0.
(1)求证:方程恒有两个不相等的实数根;
(2)若此方程的一个根是1,请求出方程的另一个根,并求以此两根为边长的直角三角形的周长.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2007•西城区二模)已知关于x的方程x2+3x=8-m有两个不相等的实数根.
(1)求m的最大整数是多少?
(2)将(1)中求出的m值,代入方程x2+3x=8-m中解出x的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知关于x的方程x2-2(k+1)x+k2=0有两个实数根,求k的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知关于x的方程x2-(3k+1)x+2k2+2k=0
(1)求证:无论k取何实数值,方程总有实数根.
(2)若等腰△ABC的一边长为a=6,另两边长b,c恰好是这个方程的两个根,求此三角形的周长.

查看答案和解析>>

同步练习册答案