精英家教网 > 初中数学 > 题目详情
如图,矩形ABCD的长与宽分别是2cm和1cm,AB在直线L上.依次以B,C′,D″为中心将矩形ABCD按顺时针方向旋转90°,这样点A走过的曲线依次为,其中交CD于点P.
(1)求矩形A′BC′D′的对角线A′C′的长;
(2)求的长;
(3)求图中部分的面积.
(4)求图中部分的面积.

【答案】分析:(1)由于旋转得到的两个图形全等,求出矩形ABCD的对角线就是矩形A′BC′D′的对角线,利用勾股定理求解即可;
(2)直接利用弧长公式计算就可以了,圆心角是90°;
(3)连接A″C′,就会得到一个以半径A′C′的扇形,利用面积割补,可看出阴影部分面积就等于扇形面积.
(4)连接BP,利用所给的矩形的边长,可得∠CPB的正弦值,故可求∠CPB,再利用平行可得到∠APB的度数,而阴影面积就等于扇形ABP与Rt△BPC的面积之和.因此可求得所求的面积.
解答:解:(1)由旋转得A′C′=AC==(cm).

(2)的长为=π(cm).

(3)连接A″C′,
由旋转的性质,△A′D′C′≌△A″D″C′,
故所求的面积S=S扇形C′A′A′′==π×(2=π(cm2).

(4)连接BP,在Rt△BCP中,BC=1,BP=BA=2.
∴∠BPC=30°,CP=
∴∠ABP=30°,
∴T=S扇形ABP+S△PBC=+×1×=+(cm2).
点评:本题考查了旋转的性质,勾股定理,弧长、扇形公式计算,反三角函数等知识.有一定难度.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网如图,矩形ABCD的对角线AC和BD相交于点O,过点O的直线分别交AD和BC于点E、F,AB=2,BC=3,则图中阴影部分的面积为
 

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,矩形ABCD的对角线BD经过坐标原点,矩形的边分别平行于坐标轴,点C在反比例函数y=
kx
的图象上,若点A的坐标为(-2,-2),则k的值为
 

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,矩形ABCD的一边AD在x轴上,对角线AC、BD交于点E,过B点的双曲线y=
kx
(x>0)
恰好经过点E,AB=4,AD=2,则K的值是
 

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•葫芦岛)如图,矩形ABCD的对角线交于点O,∠BOC=60°,AD=3,动点P从点A出发,沿折线AD-DO以每秒1个单位长的速度运动到点O停止.设运动时间为x秒,y=S△POC,则y与x的函数关系大致为(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,矩形ABCD的对角线交于O点,∠AOB=120°,AD=5cm,则AC=
10
10
cm.

查看答案和解析>>

同步练习册答案