精英家教网 > 初中数学 > 题目详情
10.分解因式:x2+3x-10=(x-2)(x+5).

分析 原式利用十字相乘法分解即可.

解答 解:原式=(x-2)(x+5),
故答案为:(x-2)(x+5)

点评 此题考查了因式分解-十字相乘法,熟练掌握十字相乘的方法是解本题的关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

11.如图,在平面直角坐标系内,点O为坐标原点,直线y=$\frac{1}{2}$x+1与抛物线y=$\frac{1}{2}$x2+bx+c交于A,B两点,点A在x轴上,点B的横坐标为4.
(1)求抛物线的解析式;
(2)抛物线y=$\frac{1}{2}$x2+bx+c 交x轴正半轴于点C,横坐标为t的点P在第四象限的抛物线上,过点P作AB的垂线交x轴于点E,点Q为垂足,设CE的长为d,求d与t之间的函数关系式,直接写出自变量t的取值范围:
(3)在(2)的条件下,过点B作y轴的平行线交x轴于点D,连接DQ.当∠AQD=3∠PQD时,求点P坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

18.如图,一次函数l1:y=2x+b的图象与x轴、y轴分别相交于A、B两点,A的坐标为(2,0),y轴正半轴上有一点C(0,$\frac{3}{2}$),过点C有一条直线l2∥l1(l2与l1的k相等,即k2=k1),M是l2上任意一点.
(1)求l1的解析式及B点的坐标;
(2)求直线l2的解析式,连接AM、BM求S△ABM的值.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

5.如图1所示,AB=AD,AC=AE,∠1=∠2.

(1)求证:BC=DE.
(2)如图2,若M、N分别为BC、DE的中点,试确定AM与AN的关系,并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

15.经过千百年的梦想和期盼,中华民族在“高峡出平湖”的骄傲与自豪中,揭开了治理长江、开发长江的新篇章,举世瞩目的三峡工程正式下闸蓄水后,由于上游来水比原计划平均每天增加$\frac{10}{3}$亿立方米,水位上升幅度比原计划平均每天增加$\frac{7}{6}$米,从而比原计划提前5天实现水库库容净增100亿立方米、坝前水位135米的蓄水目标.问:原计划几天实现蓄水目标?正式下闸蓄水时的坝前水位是多少米?

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

2.三个内角的度数都是质数的三角形的种数(三个内角的度数对应相等的两个三角形视为一种)是2°,5°,173°; 2°,11°,167°; 2°,29°,149°; 2°,41°,137°;2°,47°,131°; 2°,71°,107°; 2°,89°,89°共7种..

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

19.你能比较两个数20132014与20142013的大小吗为了解决这个问题,我们先把它抽象成这样的问题:写成它的一般形式,即比较nn+1和(n+1)n的大小(即是自然数).然后,我们分析n=1,n=2,n=3…这些简单情形入手,从而发现规律,经过归纳,才想出结论.
(1)通过计算,比较下列各组中两个数的大小
①12<21  ②23<32    ③34>43    ④45>54  ⑤56>65  
(2)从第(1)题的结果经过归纳,可以猜想nn+1和(n+1)n的大小关系是$\left\{\begin{array}{l}{{n}^{n+1}{<(n+1)}^{n}(n=1,2)}\\{{n}^{n+1}{>(n+1)}^{n}(n≥3)}\end{array}\right.$;
(3)根据下面归纳猜想得到的一般结论,试比较20132014与20142013的两个数的大小.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

20.在平面直角坐标系xOy中,已知点A在x轴正半轴上,OA=8,点E在坐标平面内,且AE=12,∠EAO=60°
(1)求点E的坐标以及过点O,A,E三点的抛物线表达式;
(2)点F(t,0)在x轴上运动,直线FC与直线AE关于某条垂直于x轴的直线对称,且相交于点G,设△GEF的面积为S,当0≤t≤8时,请写出S关于t的函数表达式并求S的最大值.

查看答案和解析>>

同步练习册答案