精英家教网 > 初中数学 > 题目详情
(本题满分12分)
如图,在△ABC中,AD平分∠BAC.

(1)若AC=BC,∠B︰∠C=2︰1,试写出图中的所有等腰三角形,并给予证明.
(2)若ABBD=AC,求∠B︰∠C 的比值

(1)证明略
(2)2:1解析:
(1)(△ABC证明1分,△ABD和△ADC的证明各3分,本小题共7分)
等腰三角形有3个:△ABC,△ABD,△ADC (只写出没有任何证明,1个给1分)
证明:∵AC=BC
∴△ABC是等腰三角形--------------1分
∴∠B=∠BAC--------------2分
∵∠B︰∠C=2︰1
∠B+∠BAC+∠C=180°
∴∠B=∠BAC=72°,∠C=36°--------------4分
∵∠BAD=∠DAC=∠BAC=36°
∴∠B=∠ADB=72°, ∠DAC=∠C=36°--------------6分
∴△ABD和△ADC是等腰三角形--------------7分
(2)方法1:在AC上截取AE=AB,连接DE-------------1分

又∠BAD=∠DAE,AD=AD
∴△ABD≌△ADE-------------2分
∴∠AED=∠B , BD=DE
∵AB+BD=AC
∴BD=EC
∴DE=EC -------------4分
∴∠EDC=∠C
∴∠B=∠AED=∠EDC+∠C=2∠C
即∠B︰∠C=2︰1--------------5分
方法2:延长AB到E,使AE=AC连接DE

证明△ADE≌△ADC
再类似证明得到∠B=2∠AED=2∠C
利用“截长法”或“补短法”添加辅助线,将 AC-AB或AB+BD转化成一条线段
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

(本题满分12分)

如图,直角梯形ABCD中,ABDC.动点M以每秒1个单位长的速度,从点A沿线段AB向点B运动;同时点P以相同的速度,从点C沿折线C-D-A向点A运动.当点M到达点B时,两点同时停止运动.过点M作直线lAD,与线段CD的交点为E,与折线A-C-B的交点为Q.点M运动的时间为t(秒).

(1)当时,求线段的长;

(2)当0<t<2时,如果以C、P、Q为顶点的三角形为直角三角形,求t的值;

(3)当t>2时,连接PQ交线段AC于点R.请探究是否为定值,若是,试求这个定值;若不是,请说明理由.

 

查看答案和解析>>

科目:初中数学 来源:2011年初中毕业升学考试(贵州铜仁卷)数学 题型:解答题

(本题满分12分)如图,在边长为2的正方形ABCD中,PAB的中点,Q为边CD上一动点,设DQt(0≤t≤2),线段PQ的垂直平分线分别交边ADBC于点MN,过QQEAB于点E,过MMFBC于点F
(1)当t≠1时,求证:△PEQ≌△NFM
(2)顺次连接PMQN,设四边形PMQN的面积为S,求出S与自变量t之间的函数关系式,并求S的最小值.

 

查看答案和解析>>

科目:初中数学 来源:2011-2012学年上海市徐汇区中考一模数学卷 题型:解答题

(本题满分12分)

如图,的顶点AB在二次函数的图像上,又点AB[分别在轴和轴上,ABO

1.(1)求此二次函数的解析式;(4分)

2.

 

 
(2)过点交上述函数图像于点

在上述函数图像上,当相似时,求点的坐标.(8分)

 

 

查看答案和解析>>

科目:初中数学 来源:2010年高级中等学校招生考试数学卷(广东珠海) 题型:解答题

(本题满分12分)如图1,抛物线与x轴交于A、C两点,与y轴交于B点,与直线交于A、D两点。

⑴直接写出A、C两点坐标和直线AD的解析式;

⑵如图2,质地均匀的正四面体骰子的各个面上依次标有数字-1、1、3、4.随机抛掷这枚骰子两次,把第一次着地一面的数字m记做P点的横坐标,第二次着地一面的数字n记做P点的纵坐标.则点落在图1中抛物线与直线围成区域内(图中阴影部分,含边界)的概率是多少?

 

查看答案和解析>>

科目:初中数学 来源:2010年高级中等学校招生全国统一考试数学卷(广西桂林) 题型:解答题

(本题满分12分)

如图,直角梯形ABCD中,ABDC.动点M以每秒1个单位长的速度,从点A沿线段AB向点B运动;同时点P以相同的速度,从点C沿折线C-D-A向点A运动.当点M到达点B时,两点同时停止运动.过点M作直线lAD,与线段CD的交点为E,与折线A-C-B的交点为Q.点M运动的时间为t(秒).

(1)当时,求线段的长;

(2)当0<t<2时,如果以C、P、Q为顶点的三角形为直角三角形,求t的值;

(3)当t>2时,连接PQ交线段AC于点R.请探究是否为定值,若是,试求这个定值;若不是,请说明理由.

 

查看答案和解析>>

同步练习册答案