【题目】图①是一个长为2m,宽为2n的长方形纸片,将长方形纸片沿图中虚线剪成四个形状和大小完全相同的小长方形,然后拼成图②所示的一个大正方形.
(1)用两种不同的方法表示图②中小正方形(阴影部分)的面积:
方法一:S小正方形= ;
方法二:S小正方形= ;
(2)(m+n)2,(m﹣n)2,mn这三个代数式之间的等量关系为
(3)应用(2)中发现的关系式解决问题:若x+y=9,xy=14,求x﹣y的值.
【答案】(1)(m+n)2﹣4mn,(m﹣n)2;;(2)(m+n)2﹣4mn=(m﹣n)2’(3) ±5.
【解析】
(1)观察图形可确定:方法一,大正方形的面积为(m+n)2,四个小长方形的面积和为4mn,中间阴影部分的面积为S=(m+n)2-4mn;
方法二,图2中阴影部分为正方形,其边长为m-n,所以其面积为(m-n)2.
(2)观察图形可确定,大正方形的面积减去四个小长方形的面积等于中间阴影部分的面积,即(m+n)2-4mn=(m-n)2.
(3)根据(2)的关系式代入计算即可求解.
(1)方法一:S小正方形=(m+n)2﹣4mn.
方法二:S小正方形=(m﹣n)2.
(2)由(1)可知,(m+n)2,(m﹣n)2,mn这三个代数式之间的等量关系为(m+n)2﹣4mn=(m﹣n)2.
(3)∵x+y=9,xy=14,
∴x﹣y=±=±5.
故答案为:(m+n)2﹣4mn,(m﹣n)2;(m+n)2﹣4mn=(m﹣n)2;±5.
科目:初中数学 来源: 题型:
【题目】如图,下列判断正确的是( )
A. 有2对同位角,2对内错角,2对同旁内角
B. 有2对同位角,2对内错角,3对同旁内角
C. 有4对同位角,2对内错角,4对同旁内角
D. 以上判断均不正确
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知点A、B、C、D、E在同一直线上,且AC=BD,E是线段BC的中点.
(1)点E是线段AD的中点吗?说明理由;
(2)当AD=10,AB=3时,求线段BE的长度.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,CD是经过∠BCA的顶点C的一条直线,CA=CB,E,F是直线CD上的两点,且∠BEC=∠CFA=α.
(1)若直线CD经过∠BCA的内部,且E,F在射线CD上,请解决下面两个问题:
①如图(a),若∠BCA=90°,α=90°,则BE________CF,EF________|BE-AF|(填“>”“<”或“=”);
②如图(b),若0°<∠BCA<180°,请添加一个关于α与∠BCA关系的条件________,使①中的两个结论仍然成立,并证明两个结论成立;
(2)如图(c),若直线CD经过∠BCA的外部,∠BCA=α,请写出EF,BE,AF三条线段数量关系的合理猜想(不要求证明).
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】为了提高产品的附加值,某公司计划将研发生产的1200件新产品进行精加工后再投放市场.现有甲、乙两个工厂都具备加工能力,公司派出相关人员分别到这两个工厂了解情况,获得如下信息:
信息一:甲工厂单独加工完成这批产品比乙工厂单独加工完成这批产品多用10天;
信息二:乙工厂每天加工的数量是甲工厂每天加工数量的1.5倍.
根据以上信息,求甲、乙两个工厂每天分别能加工多少件新产品.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知O为直线AD上一点,∠AOC与∠AOB互补,OM、ON分别是∠AOC、∠AOB的平分线,∠MON=56°.
⑴ ∠COD与∠AOB相等吗?请说明理由;
⑵ 求∠BOC的度数;
⑶ 求∠AOB与∠AOC的度数.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】阅读下列材料,并解决有关问题:
我们知道,,现在我们可以用这一结论来化简含有绝对值的式子,例如化简式子时,可令和,分别求得,(称、分别为与的零点值)。在有理数范围内,零点值和可将全体有理数不重复且不遗漏地分成如下三种情况:(1);(2)≤;(3)≥2。从而化简代数式可分为以下3种情况:
(1)当时,原式;
(2)当≤时,原式;
(3)当≥2时,原式
综上所述:原式
通过以上阅读,请你类比解决以下问题:
(1)填空:与的零点值分别为 ;
(2)化简式子。
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图①,点O是直线AB上的一点,∠COD是直角,OE平分∠BOC.
(1)如图①,若∠AOC=40°,求∠DOE的度数;
(2)如图①,若∠AOC=α,直接写出∠DOE的度数(用含α的代数式表示)
(3)将图①中的∠COD绕顶点O顺时针旋转至图②的位置,OE平分∠BOC.
①探究∠AOC和∠DOE的度数之间的关系,写出你的结论,并说明理由;
②在∠AOC的内部有一条射线OF,且∠AOC﹣3∠AOF=2∠BOE,试确定∠AOF与∠DOE的度数之间的关系,说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com