精英家教网 > 初中数学 > 题目详情

【题目】图①是一个长为2m,宽为2n的长方形纸片,将长方形纸片沿图中虚线剪成四个形状和大小完全相同的小长方形,然后拼成图②所示的一个大正方形.

(1)用两种不同的方法表示图②中小正方形(阴影部分)的面积:

方法一:S小正方形=   

方法二:S小正方形=   

(2)(m+n)2,(m﹣n)2,mn这三个代数式之间的等量关系为   

(3)应用(2)中发现的关系式解决问题:若x+y=9,xy=14,求x﹣y的值.

【答案】(1)(m+n)2﹣4mn,(m﹣n)2;;(2)(m+n)2﹣4mn=(m﹣n)2(3) ±5.

【解析】

(1)观察图形可确定:方法一,大正方形的面积为(m+n)2,四个小长方形的面积和为4mn,中间阴影部分的面积为S=(m+n)2-4mn;
方法二,图2中阴影部分为正方形,其边长为m-n,所以其面积为(m-n)2
(2)观察图形可确定,大正方形的面积减去四个小长方形的面积等于中间阴影部分的面积,即(m+n)2-4mn=(m-n)2
(3)根据(2)的关系式代入计算即可求解.

1)方法一:S小正方形=(m+n)2﹣4mn.

方法二:S小正方形=(m﹣n)2

(2)由(1)可知,(m+n)2,(m﹣n)2,mn这三个代数式之间的等量关系为(m+n)2﹣4mn=(m﹣n)2

(3)x+y=9,xy=14,

x﹣y=±=±5.

故答案为:(m+n)2﹣4mn,(m﹣n)2;(m+n)2﹣4mn=(m﹣n)2;±5.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,下列判断正确的是(  )

A. 有2对同位角,2对内错角,2对同旁内角

B. 有2对同位角,2对内错角,3对同旁内角

C. 有4对同位角,2对内错角,4对同旁内角

D. 以上判断均不正确

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知点ABCDE在同一直线上,且ACBDE是线段BC的中点.

(1)点E是线段AD的中点吗?说明理由;

(2)当AD=10,AB=3时,求线段BE的长度.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,CD是经过∠BCA的顶点C的一条直线,CA=CB,E,F是直线CD上的两点,且∠BEC=CFA=α.

(1)若直线CD经过∠BCA的内部,且E,F在射线CD上,请解决下面两个问题:

①如图(a),若∠BCA=90°,α=90°,则BE________CF,EF________|BE-AF|(“>”“<”“=”);

②如图(b),若0°<BCA<180°,请添加一个关于α与∠BCA关系的条件________,使①中的两个结论仍然成立,并证明两个结论成立;

(2)如图(c),若直线CD经过∠BCA的外部,∠BCA=α,请写出EF,BE,AF三条线段数量关系的合理猜想(不要求证明).

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】为了提高产品的附加值,某公司计划将研发生产的1200件新产品进行精加工后再投放市场.现有甲、乙两个工厂都具备加工能力,公司派出相关人员分别到这两个工厂了解情况,获得如下信息:

信息一:甲工厂单独加工完成这批产品比乙工厂单独加工完成这批产品多用10天;

信息二:乙工厂每天加工的数量是甲工厂每天加工数量的1.5倍.

根据以上信息,求甲、乙两个工厂每天分别能加工多少件新产品.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,四边形ABCD是菱形,∠A=60°,AB=6,扇形BEF的半径为6,圆心角为60°,则图中阴影部分的面积是

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知O为直线AD上一点,∠AOC与∠AOB互补,OMON分别是∠AOCAOB的平分线,∠MON56°.

COD与∠AOB相等吗?请说明理由;

求∠BOC的度数;

求∠AOB与∠AOC的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】阅读下列材料,并解决有关问题:

我们知道,,现在我们可以用这一结论来化简含有绝对值的式子,例如化简式子时,可令分别求得分别为的零点值。在有理数范围内,零点值可将全体有理数不重复且不遗漏地分成如下三种情况:(1);(2);(3)≥2。从而化简代数式可分为以下3种情况:

(1)时,原式

(2)当时,原式

(3)≥2时,原式

综上所述:原式

通过以上阅读,请你类比解决以下问题:

(1)填空:的零点值分别为

(2)化简式子

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,点O是直线AB上的一点,∠COD是直角,OE平分∠BOC.

(1)如图,若∠AOC=40°,求∠DOE的度数;

(2)如图,若∠AOC=α,直接写出∠DOE的度数(用含α的代数式表示)

(3)将图中的∠COD绕顶点O顺时针旋转至图的位置,OE平分∠BOC.

探究∠AOC∠DOE的度数之间的关系,写出你的结论,并说明理由;

∠AOC的内部有一条射线OF,且∠AOC﹣3∠AOF=2∠BOE,试确定∠AOF∠DOE的度数之间的关系,说明理由.

查看答案和解析>>

同步练习册答案