精英家教网 > 初中数学 > 题目详情

如图,直角梯形ABCD中,∠BCD=90°,AD∥BC,BC=CD,E为梯形内一点,且∠BEC=90°,将△BEC绕C点旋转90°使BC与DC重合,得到△DCF,连EF交CD于M,若BC=5,CF=3,则在下列四个结论中:①CE∥DF;②△DMF是等腰三角形;③EF平分∠CFD;④DM:MC=4:3.正确结论的序号是________.

①③④
分析:在直角梯形中,可得∠ECD=∠CDF,进而可得CE∥DF;但不能得出△MDF为等腰三角形;
可由∠CFE=∠EFD得EF平分∠CFD;由△CME∽△DMF,可得DM:MC=DF:CE=4:3.
解答:∵△BEC绕C点旋转90°得到△DCF,∴△BEC≌△DCF,∠BCE=∠DCF
∵∠BCD=90°,AD∥BC,即∠BCE+∠ECD=90°,∠DCF+∠CDF=90°,
∴∠ECD=∠CDF,∴CE∥DF,①正确;
②中假设MF=MD,则∠MDF=∠MFD,
∵CE=CF,∴∠CEF=∠CFE,
∵∠MFD+∠EFC=90°,∠FEC+∠ECF=∠DMF≠90°,所以假设不成立,②不对;
∵CE=CF,∴∠CEF=∠CFE,由①得,CE∥DF,
∴∠CEF=∠EFD,∴∠CFE=∠EFD即EF平分∠CFD,③正确;
BC=5,即CD=5,CF=3,在Rt△CDF中,则DF=4,
由△CME∽△DMF,可得DM:MC=DF:CE=4:3,④正确.
故正确的结论为:①③④.
点评:掌握直角梯形的性质,能够运用直角梯形的性质求解一些线段的平行,相等问题.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网如图,直角梯形ABCD中,AD∥BC,∠ABC=90°,点E是AB边上一点,AE=BC,DE⊥EC,取DC的中点F,连接AF、BF.
(1)求证:AD=BE;
(2)试判断△ABF的形状,并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,直角梯形ABCD中,∠DAB=90°,AB∥CD,AB=AD,∠ABC=60度.以AD为边在直角梯形精英家教网ABCD外作等边三角形ADF,点E是直角梯形ABCD内一点,且∠EAD=∠EDA=15°,连接EB、EF.
(1)求证:EB=EF;
(2)延长FE交BC于点G,点G恰好是BC的中点,若AB=6,求BC的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,直角梯形ABCD中,AD∥BC,∠BCD=90°,且CD=2AD,tan∠ABC=2.
(1)求证:BC=CD;
(2)在边AB上找点E,连接CE,将△BCE绕点C顺时针方向旋转90°得到△DCF.连接EF,如果EF∥BC,试画出符合条件的大致图形,并求出AE:EB的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•深圳二模)如图,直角梯形ABCD中,∠DAB=90°,AB∥CD,AB=AD,∠ABC=60°.以AD为边在直角梯形ABCD外作等边三角形ADF,点E是直角梯形ABCD内一点,且∠EAD=∠EDA=15°,连接EB、EF.
(1)求证:EB=EF;
(2)若EF=6,求梯形ABCD的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知:如图,直角梯形ABCD中,AD∥BC,∠ABC=90°,以AB为直径的⊙O切DC边于E点,AD=3cm,BC=5cm.求⊙O的面积.

查看答案和解析>>

同步练习册答案