精英家教网 > 初中数学 > 题目详情
△ABC中,∠C=90°,∠B=60°,AC=3,以C为圆心,r为半径作⊙C,如果点B在圆内,而点A在圆外,那么r的取值范围是
 
分析:根据直角三角形的角的度数和AC的长可以求出BC的长,然后由点B在圆内,点A在圆外,确定r的取值范围.
解答:解:因为△ABC中,∠C=90°,∠B=60°,所以∠A=30°,得到AC=
3
BC,又AC=3,得BC=
3

∵点B在圆内,∴r>BC=
3

∵点A在圆外,∴r<AC=3.
因此:
3
<r<3.
故答案是:
3
<r<3.
点评:本题考查的是点和圆的位置关系,先求出三角形的BC边的长,再根据点B和点A与⊙C的位置关系确定半径的取值范围.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

在△ABC中,DE∥BC,DE与AB相交于D,与AC相交于E,若AC=8,EC=3,DB=4,则AD=
 

查看答案和解析>>

科目:初中数学 来源: 题型:

在Rt△ABC中,∠C=90°,若∠B=60°,b=30,则a+c=
 

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,在△ABC中,AC=2,AB=3,D是AC上一点,E是AB上一点,且∠ADE=∠B,设AD=x,AE=y,则y与x之间的函数关系式是(  )
A、y=
3
2
x(0<x<2)
B、y=
3
2
x(0<x≤2)
C、y=
2
3
x(0<x≤2)
D、y=
2
3
x(0<x<2)

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,在△ABC中,AB=8,AC=6,BC=7,点D在AC上,AD=2,
(1)过点D画直线,使它截△ABC的两边所得的小三角形与△ABC相似(图形备用,标出与∠B相等的角);
(2)若截线与AB交于E,求ED的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

7、在△ABC中,AB=3,BC=8,则AC的取值范围是
5<AC<11

查看答案和解析>>

同步练习册答案