精英家教网 > 初中数学 > 题目详情
(2009•河池)如图,为测量某塔AB的高度,在离该塔底部20米处目测其顶A,仰角为60°,目高1.5米,试求该塔的高度(≈1.7).

【答案】分析:本题是一个直角梯形的问题.作CD⊥AB于点D,把求AB的问题转化求AD的长,从而在△ACD中利用三角函数求解.
解答:解:如图,CD=20,∠ACD=60°.
在Rt△ACD中,tan∠ACD=
=
∴AD=20≈34.
又∵BD=1.5,
∴塔高AB=34+1.5=35.5(米).
点评:解直角梯形可以通过作高线转化为解直角三角形和矩形的问题.
练习册系列答案
相关习题

科目:初中数学 来源:2009年全国中考数学试题汇编《二次函数》(08)(解析版) 题型:解答题

(2009•河池)如图,已知抛物线y=x2+4x+3交x轴于A、B两点,交y轴于点C,抛物线的对称轴交x轴于点E,点B的坐标为(-1,0).
(1)求抛物线的对称轴及点A的坐标;
(2)在平面直角坐标系xoy中是否存在点P,与A、B、C三点构成一个平行四边形?若存在,请写出点P的坐标;若不存在,请说明理由;
(3)连接CA与抛物线的对称轴交于点D,在抛物线上是否存在点M,使得直线CM把四边形DEOC分成面积相等的两部分?若存在,请求出直线CM的解析式;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源:2009年广西河池市中考数学试卷(解析版) 题型:解答题

(2009•河池)如图,已知抛物线y=x2+4x+3交x轴于A、B两点,交y轴于点C,抛物线的对称轴交x轴于点E,点B的坐标为(-1,0).
(1)求抛物线的对称轴及点A的坐标;
(2)在平面直角坐标系xoy中是否存在点P,与A、B、C三点构成一个平行四边形?若存在,请写出点P的坐标;若不存在,请说明理由;
(3)连接CA与抛物线的对称轴交于点D,在抛物线上是否存在点M,使得直线CM把四边形DEOC分成面积相等的两部分?若存在,请求出直线CM的解析式;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源:2009年全国中考数学试题汇编《投影与视图》(01)(解析版) 题型:选择题

(2009•河池)如图是圆台状灯罩的示意图,它的俯视图是( )

A.
B.
C.
D.

查看答案和解析>>

科目:初中数学 来源:2009年全国中考数学试题汇编《锐角三角函数》(08)(解析版) 题型:解答题

(2009•河池)如图,为测量某塔AB的高度,在离该塔底部20米处目测其顶A,仰角为60°,目高1.5米,试求该塔的高度(≈1.7).

查看答案和解析>>

科目:初中数学 来源:2010年湖北省宜昌市夷陵区中考数学适应性训练(三)(解析版) 题型:解答题

(2009•河池)如图1,在⊙O中,AB为⊙O的直径,AC是弦,OC=4,∠OAC=60度.
(1)求∠AOC的度数;
(2)在图1中,P为直径BA延长线上的一点,当CP与⊙O相切时,求PO的长;
(3)如图2,一动点M从A点出发,在⊙O上按逆时针方向运动,当S△MAO=S△CAO时,求动点M所经过的弧长.

查看答案和解析>>

同步练习册答案