精英家教网 > 初中数学 > 题目详情
如图,已知抛物线y=
1
4
x2+1,直线y=kx+b经过点B(0,2)
(1)求b的值;
(2)将直线y=kx+b绕着点B旋转到与x轴平行的位置时(如图1),直线与抛物线y=
1
4
x2+1相交,其中一个交点为P,求出P的坐标;
(3)将直线y=kx+b继续绕着点B旋转,与抛物线相交,其中一个交点为P'(如图②),过点P'作x轴的垂线P'M,点M为垂足.是否存在这样的点P',使△P'BM为等边三角形?若存在,请求出点P'的坐标;若不存在,请说明理由.
(1)∵直线y=kx+b过点B(0,2),
∴b=2.

(2)y=kx+b绕点B旋转到与x轴平行,即y=2,
∴P(2,2)或P(-2,2),
依题意有:
1
4
x2+1=2,
x=±2,
∴P(2,2)或P(-2,2).

(3)假设存在点P'(x0,y0),使△P'BM为等边三角形,
如图,则∠BP'M=60°
P'M=y0P'B=2(P'M-2)=2(y0-2)
且P'M=P'B
即y0=2(y0-2)
y0=4
又点P′在抛物线y=
1
4
x2+1上
1
4
x2+1=4
x=±2
3

∴当直线y=kx+b绕点B旋转时与抛物线y=
1
4
x2+1相交,存在一个交点P′(2
3
,4)或P′(-2
3
,4)
使△P'BM为等边三角形.
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

已知二次函数的图象经过A(2,0)、C(0,12)两点,且对称轴为直线x=4.设顶点为点P,与x轴的另一交点为点B.
(1)求二次函数的解析式及顶点P的坐标;
(2)如图1,在直线y=2x上是否存在点D,使四边形OPBD为等腰梯形?若存在,求出点D的坐标;若不存在,请说明理由;
(3)如图2,点M是线段OP上的一个动点(O、P两点除外),以每秒
2
个单位长度的速度由点P向点O运动,过点M作直线MNx轴,交PB于点N.将△PMN沿直线MN对折,得到△P1MN.在动点M的运动过程中,设△P1MN与梯形OMNB的重叠部分的面积为S,运动时间为t秒.求S关于t的函数关系式.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

已知抛物线y=(3-m)x2+2(m-3)x+4m-m2的最低点A的纵坐标是3,直线y=mx+b经过点A,与y轴交于点B,与x轴交于点C.
(1)求抛物线与直线AB的解析式.
(2)将直线AB绕点O顺时针旋转90°,与x轴交于点D,与y轴交于点E,求sin∠BDE的值.
(3)过B点作x轴的平行线BG,点M在直线BG上,且到抛物线的对称轴的距离为6,设点N在直线BG上,请你直接写出使得∠AMB+∠ANB=45°的点N的坐标.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

某公司推出一款新型手机,投放市场以来前3个月的利润情况如图所示,该图可以近似看作抛物线的一部分.请结合图象,解答以下问题:
(1)求该抛物线对应的二次函数解析式;
(2)该公司在经营此款手机过程中,第几月的利润能达到24万元?
(3)若照此经营下去,请你结合所学的知识,对公司在此款手机的经营状况(是否亏损?何时亏损?)作预测分析.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

有一座抛物线形拱桥,在正常水位AB时,水面AB宽24m,拱顶距离水面4m.以抛物线的顶点为原点,以抛物线的对称轴为y轴,建立如图所示的平面直角坐标系.
(1)求抛物线的解析式;
(2)若水位上升3m就达到警戒线CD的位置,求这时水面CD的宽度.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

计算机把数据存储在磁盘上,磁盘是带有磁性物质的圆盘,磁盘上有一些同心圆轨道叫做磁道.如图,现有一张半径为45mm,有
10
3
(45-r)条磁道的磁盘,这张磁盘最内磁道的半径为rmm.
(1)磁盘最内磁道上每0.015mm的弧长为1个存储单元,用r的代数式表示这条磁道有多少个存储单元?
(2)如果各磁道的存储单元数目与最内磁道相同,且磁盘的存储量是225000π个存储单元,求最内磁道的半径r是多少?

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

某果品公司为指导今年的樱桃销售,对往年的市场销售情况进行调查统计,得到如下数据:
销售价x(元/kg)25242322
销售量y(kg)2000250030003500
(1)在如图坐标系中作出各组有序数对(x,y)所对应点,连接并观察所得图象,判定y与x之间函数关系式,并求出y与x关系式.
(2)若樱桃进价为12元/kg,求销售利润P(元)与销售价x(元/kg)之间函数关系式,并求售价多少元时,利润最大?

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

如图(1)所示,E为矩形ABCD的边AD上一点,动点P、Q同时从点B出发,点P沿折线BE-ED-DC运动到点C时停止,点Q沿BC运动到点C时停止,它们运动的速度都是1cm/秒.设P、Q同时出发t秒时,△BPQ的面积为ycm2.已知y与t的函数关系图象如图(2)(曲线OM为抛物线的一部分).则下列结论错误的是(  )
A.AD=BE=5cm
B.cos∠ABE=
3
5
C.当0<t≤5时,y=
2
5
t2
D.当t=
29
4
秒时,△ABE△QBP

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

已知抛物线y=ax2-4ax+c与y轴交于点A(0,3),点B是抛物线上的点,且满足ABx轴,点C是抛物线的顶点.
(1)求抛物线的对称轴及B点坐标;
(2)若抛物线经过点(-2,0),求抛物线的表达式;
(3)对(2)中的抛物线,点D在线段AB上,若以点A、C、D为顶点的三角形与△AOC相似,试求点D的坐标.

查看答案和解析>>

同步练习册答案