分析 连接AC交EF于点O,根据菱形的性质通过勾股定理可求出AC的长度,再由AE⊥BC于点E、CF⊥AD于点F,可得出四边形AECF为平行四边形,根据平行四边形的性质,即可得出EF=AC=6,此题得解.
解答 解:连接AC交EF于点O,如图所示.
∵四边形ABCD为菱形,AB=5、BD=8,
∴AC与BD互相垂直平分,
∴BO=4,AO=$\sqrt{A{B}^{2}-B{O}^{2}}$=3,
∴AC=6.
∵AE⊥BC于点E,CF⊥AD于点F,四边形ABCD为菱形,
∴AE∥CF,且AE=CF,
∴四边形AECF为平行四边形,
∴EF=AC=6.
∴EF的长度为6.
点评 本题考查了菱形的性质、勾股定理以及平行四边形的判定与性质,根据垂直结合菱形的性质找出四边形AECF为平行四边形是解题的关键.
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
A. | 等于1 | B. | 等于36 | C. | 等于37 | D. | 无意义 |
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
A. | 矩形 | B. | 菱形 | C. | 正方形 | D. | 平行四边形 |
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com