精英家教网 > 初中数学 > 题目详情
如图,⊙O是△ABC的外接圆,已知∠ACB=45°,∠ABC=120°,⊙O的半径为1,
(1)求弦AC、AB的长;
(2)若P为CB的延长线上一点,试确定P点的位置,使PA与⊙O相切,并证明你的结论.
(1)过O作OE⊥AC于E,连接OC,?
∵∠ABC=120°,则∠AOC=120°.?
又∵OA=OC,?
∴∠OAD=∠OCD=30°.?
在Rt△AOD中,cos∠OAD=
AD
OA

又∵OA=1,?
∴AE=OA•cos30°=
3
2
.∴AC=2AE=
3
.?
在△AOB中,OA=OB=1,∠AOB=2∠ACB=90°,∴AB=
2
.?

(2)过P作PF⊥AB于F,设BF=a,?
∵∠ABP=180°-∠ABC=60°,?
∴∠BPF=30°.∴BP=2BF=2a.?
在Rt△BPF中,PF=
BP2-BE2
=
3
a
.?
∵PA切⊙O于A,∴∠OAP=90°.?
∵∠OAB=45°,∴∠PAF=45°.?
在Rt△PAF中,AE=PF=
3
a
,?
又∵AF+FB=AB=
2
,?
a+
3
a=
2

a=
6
-
2
2
.?
∴PB=2a=
6
-
2

练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:单选题

如图,△ABC内接于⊙O,EC切⊙O于点C,若∠BOC=76°,则∠BCE的度数是(  )
A.14°B.38°C.52°D.76°

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

如图,PA、PB切⊙O于A、B两点,C在
AB
AB上,过C点的切线交PA于E,交PB于F,若∠APB=50°.则∠EOF=(  )
A.45°B.50°C.65°D.75°

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图所示,过半径为6cm的⊙O外一点P引圆的切线PA,PB,连接PO交⊙O于F,过F作⊙O的切线,交PA,PB分别于D,E,如果PO=10cm,∠APB=40°.
求:(1)△PED的周长;(2)∠DOE的度数.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

如图,从点P向⊙O引两条切线PA,PB,切点为A,B,BC为⊙O的直径,若∠P=60°,PA=3,则⊙O的直径BC的长为(  )
A.2
3
B.
3
3
C.3D.4
3

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如图,P是⊙O的直径AB的延长线上一点,PC、PD切⊙O于点C、D.若PA=6,⊙O的半径为2,则∠CPD=______.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如图,PA切半圆O于A点,如果∠P=35°,那么∠AOP=______度.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

已知⊙O的直径AB与弦CD互相垂直,垂足为点E.⊙O的切线BF与弦AD的延长线相交于点F,且AD=2
7
,sin∠BCD=
3
4

(1)求证:CDBF;
(2)求弦CD的长;
(3)求⊙O的半径.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

⊙O的半径为4cm,点A在直线l上,若AO=4cm,则直线l与⊙O的位置关系是(  )
A.相交B.相切C.相离D.相切或相交

查看答案和解析>>

同步练习册答案