精英家教网 > 初中数学 > 题目详情
已知一次函数y=kx+b的图象经过点(-1,-5),且与正比例函数y=
12
x的图象相交于点(2,a),求:
(1)a的值;
(2)k,b的值;
(3)这两个函数图象与x轴所围成的三角形的面积.
分析:(1)由题知,点(2,a)在正比例函数图象上,代入即可求得a的值.
(2)把点(-1,-5)及点(2,a)代入一次函数解析式,再根据(1)即可求得k,b的值.
(3)由于正比例函数过原点,又有两个函数交点,求面积只需知道一次函数与x轴的交点即可,S=
1
2
×a×x.
解答:解:(1)由题知,把(2,a)代入y=
1
2
x,
解得a=1;
(2)由题意知,把点(-1,-5)及点(2,a)代入一次函数解析式得:-k+b=-5,2k+b=a,
又由(1)知a=1,
解方程组得到:k=2,b=-3;
(3)由(2)知一次函数解析式为:y=2x-3,
y=2x-3与x轴交点坐标为(
3
2
,0)
∴所求三角形面积S=
1
2
×1×
3
2
=
3
4
点评:本题考查了一次函数图象上点的坐标的性质以及正比例函数图象上点的坐标的性质,是基础题型.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网已知一次函数y=kx+2的图象经过A(-1,1).
(1)求此一次函数的解析式;
(2)求这个一次函数图象与x轴的交点B的坐标;画出函数图象;
(3)求△AOB的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

5、已知一次函数y=kx-1,若y随x的增大而减小,则该函数的图象经过(  )象限.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知一次函数y=kx+b(k、b为常数)的图象与反比例函数y=
mx
(m为常数,精英家教网m≠0)的图象相交于点 A(1,3)、B(n,-1)两点.
(1)求上述两个函数的解析式;
(2)如果M为x轴正半轴上一点,N为y轴负半轴上一点,以点A,B,N,M为顶点的四边形是平行四边形,求直线MN的函数解析式.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知一次函数y=kx+b的图象如图所示,指出k、b的符号,并求出k和b的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知一次函数y=kx+2,当x=5时,y的值为4,求k的值.

查看答案和解析>>

同步练习册答案