精英家教网 > 初中数学 > 题目详情
在东西方向的海岸线l上有一长为1km的码头MN(如图),在码头西端M的正西19.5km处有一观察站A.某时刻测得一艘匀速直线航行的轮船位于A的北偏西30°,且与A相距40km的B处;经过1小时20分钟,又测得该轮船位于A的北精英家教网偏东60°,且与A相距8
3
km的C处.
(1)求该轮船航行的速度(保留精确结果);
(2)如果该轮船不改变航向继续航行,那么轮船能否正好行至码头MN靠岸?请说明理由.
分析:(1)根据∠1=30°,∠2=60°,可知△ABC为直角三角形.根据勾股定理解答.
(2)延长BC交l于T,比较AT与AM、AN的大小即可得出结论.
解答:解:(1)∵∠1=30°,∠2=60°,
∴△ABC为直角三角形.
∵AB=40km,AC=8
3
km,
∴BC=
AB2+AC2
=
402+(8
3
)
2
=16
7
(km).
∵1小时20分钟=80分钟,1小时=60分钟,
16
7
80
×60=12
7
(千米/小时).

(2)能.
理由:作线段BR⊥x轴于R,作线段CS⊥x轴于S,延长BC交l于T.
精英家教网∵∠2=60°,
∴∠4=90°-60°=30°.
∵AC=8
3
(km),
∴CS=8
3
sin30°=4
3
(km).
∴AS=8
3
cos30°=8
3
×
3
2
=12(km).
又∵∠1=30°,
∴∠3=90°-30°=60°.
∵AB=40km,
∴BR=40•sin60°=20
3
(km).
∴AR=40×cos60°=40×
1
2
=20(km).
易得,△STC∽△RTB,
所以
ST
RT
=
CS
BR

ST
ST+20+12
=
4
3
20
3

解得:ST=8(km).
所以AT=12+8=20(km).
又因为AM=19.5km,MN长为1km,∴AN=20.5km,
∵19.5<AT<20.5
故轮船能够正好行至码头MN靠岸.
点评:此题结合方向角,考查了阅读理解能力、解直角三角形的能力.计算出相关特殊角和作出辅助线构造相似三角形是解题的关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

(2012•乐山)如图,在东西方向的海岸线l上有一长为1千米的码头MN,在码头西端M的正西方向30 千米处有一观察站O.某时刻测得一艘匀速直线航行的轮船位于O的北偏西30°方向,且与O相距20
3
千米的A处;经过40分钟,又测得该轮船位于O的正北方向,且与O相距20千米的B处.
(1)求该轮船航行的速度;
(2)如果该轮船不改变航向继续航行,那么轮船能否正好行至码头MN靠岸?请说明理由.(参考数据:
2
≈1.414
3
≈1.732

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•广州)如图,在东西方向的海岸线MN上有A、B两艘船,均收到已触礁搁浅的船P的求救信号,已知船P在船A的北偏东58°方向,船P在船B的北偏西35°方向,AP的距离为30海里.
(1)求船P到海岸线MN的距离(精确到0.1海里);
(2)若船A、船B分别以20海里/小时、15海里/小时的速度同时出发,匀速直线前往救援,试通过计算判断哪艘船先到达船P处.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•铁岭)如图,在东西方向的海岸线上有A、B两个港口,甲货船从A港沿北偏东60°的方向以4海里/小时的速度出发,同时乙货船从B港沿西北方向出发,2小时后相遇在点P处,问乙货船每小时航行
2
2
2
2
海里.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在东西方向的海岸线上有A、B两个港口,甲货船从A港沿北偏东60°的方向以4海里/小时的速度出发,同时乙货船从B港沿西北方向出发,2小时后相遇在点P处,问乙货船每小时航行多少海里?

查看答案和解析>>

同步练习册答案