精英家教网 > 初中数学 > 题目详情
17.如图,在平行四边形ABCD中(AB≠BC),直 线EF经过其对角线的交点O,且分别交AD、BC于点M、N,交BA、DC的延长线于点E、F,下列结论:
①AO=BO;
②OE=OF;
③△EAM≌△CFN;
④△EAO≌△CNO,
其中正确的是(  )
A.①②B.②③C.②④D.③④

分析 ①根据平行四边形的对边相等的性质即可求得AO≠BO,即可求得①错误;
②易证△AOE≌△COF,即可求得EO=FO;
③根据相似三角形的判定即可求得△EAM∽△EBN;
④易证△EAO≌△FCO,而△FCO和△CNO不全等,根据全等三角形的传递性即可判定该选项错误.

解答 解:①平行四边形中邻边垂直则该平行四边形为矩形,故本题中AC≠BD,即AO≠BO,故①错误;

②∵四边形ABCD是平行四边形,
∴AB∥CD,OA=OC,
∴∠E=∠F,
在△AOE和△COF中,
∵$\left\{\begin{array}{l}{∠E=∠F}\\{∠AOE=∠COF}\\{OA=OC}\end{array}\right.$,
∴△AOE≌△COF(AAS),
∴OE=OF,
故②正确;

③由②知,△AOE≌△COF,则∠A=∠F、AE=CF.
在△EAM与△CFN中,$\left\{\begin{array}{l}{∠A=∠F}\\{AE=CF}\\{∠EAM=∠FCN}\end{array}\right.$,
∴△EAM≌△CFN(ASA),
故③正确;

④∵△AOE≌△COF,且△FCO和△CNO不全等,
故△EAO和△CNO不全等,故④错误,
即②③正确.
故选B.

点评 本题考查了相似三角形的判定,考查了全等三角形对应边相等的性质,考查了平行四边形对边平行的性质,本题中求证△AOE≌△COF是解题的关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

16.当分子、分母中含有多项式的乘方时,先分解因式,再转化为积的计算:($\frac{{x}^{2}-8x+16}{{x}^{2}+2x+1}$)3÷($\frac{x-4}{x+1}$)4•($\frac{x+1}{x+2}$)2

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

8.已知a、b互为相反数,c、d互为倒数,m的绝对值是1,求m2016+$\frac{2a+2b}{cd}$-2018m的值.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

5.如图,在Rt△ABC中,∠C=90°,AB=10cm,sin∠B=$\frac{4}{5}$.点P从点B出发沿BA方向向点A运动,速度为1cm/s,同时点Q从点A出发沿A→C→B方向向点B运动,速度为2cm/s,当一个动点到达终点时,另一个动点也随之停止运动.设点P的运动时间为t(秒).
(1)当点Q在AC上运动时,t为何值时△APQ是直角三角形?
(2)当t=6时,求tan∠BPQ;
(3)当△APQ的面积为8时,求t的值.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

12.我们定义一种新运算:a*b=a2-b+ab.例如:1*3=12-2+1×2=1
(1)求2*(-3)的值.
(2)求(-2)*[2*(-3)]的值.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

2.-43=-64;其底数为4;指数为3.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

9.如图1,BC是⊙O的直径,点A在⊙O上,AD⊥BC,垂足为D,$\widehat{AE}$=$\widehat{AB}$,BE分别交AD、AC于点F、G.
(1)判断△FAG的形状,并说明理由;
(2)如图2,若点E和点A在BC的两侧,BE、AC的延长线交于点G,AD的延长线交BE于点F,其余条件不变,(1)中的结论还成立吗?请说明理由;
(3)在(2)的条件下,若BG=26,BD-DF=7,求AB的长.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

6.-3的倒数-$\frac{1}{3}$,-$\frac{3a{b}^{3}{c}^{2}}{2}$的系数是-$\frac{3}{2}$.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

7.(1)等边三角形△ABC中,点D是AB边所在直线上的一动点(D与A、B不重合),连接DC,以DC为边在BC边上方作等边三角形△DCE,连接AE,
①如图1,当D在线段AB上时,∠ABC与∠EAC有怎样的数量关系直接写出结论∠ABC=∠EAC
②如图2,当D在BA延长线上时,求证:∠ABC=∠EAC
③如图3,当D在AB延长线上时,探究∠ABC与∠EAC的数量关系,直接写出结论∠ABC+∠EAC=180°或∠EAC=2∠ABC
(2)等腰三角形△ABC中,AB=AC,点D是AB边上一动点(D与A、B不重合),如图4,连接DC,以DC为边在BC边上方作等腰三角形△DCE,使顶角∠DEC=∠BAC,连接AE,探究∠ABC与∠EAC的数量关系,给予证明

查看答案和解析>>

同步练习册答案