精英家教网 > 初中数学 > 题目详情
9.随着车辆的增加,交通违规的现象越来越严重,交警对人民路某雷达测速区检测到的一组汽车的时速数据进行整理(速度在30-40含起点值30,不含终点值40),得到其频数及频率如表:
数据段频数频率
30-40100.05
40-5036c
50-60a0.39
60-70bd
70-80200.10
总计2001
(1)表中a、b、c、d分别为:a=78; b=56; c=0.18; d=0.28
(2)补全频数分布直方图;
(3)如果汽车时速不低于60千米即为违章,则违章车辆共有多少辆?

分析 (1)根据第一组的频数是10,对应的频率是0.05即可求得整理的车辆总数,然后根据百分比的意义求解;
(2)根据(1)的结果即可补全直方图;
(3)求得最后两组的和即可.

解答 解:(1)整理的车辆总数是:10÷0.05=200(辆),
则a=200×0.39=78,
c=$\frac{36}{200}$=0.18;
d=1-0.18-0.39-0.10=0.28,
b=200×0.28=56.
故答案是:78;56;0.18;0.28;
(2)

(3)违章车辆共有56+20=76(辆).

点评 本题考查读频数分布直方图的能力和利用统计图获取信息的能力;利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

12.直线y=x-6与x轴、y轴分别交于A、B两点,点E从B点出发,以每秒1个单位长度的速度沿线段BO向O点移动(不考虑点E与B、O两点重合的情况),过点E作EF∥AB,交x轴于点F,将四边形ABEF沿直线EF折叠后,与点A对应的点记作点C,与点B对应的点记作点D,得到四边形CDEF,设点E的运动时间为t秒.
(1)画出当t=2时,四边形ABEF沿直线EF折叠后的四边形CDEF(不写画法);
(2)在点E运动过程中,CD交x轴于点G,交y轴于点H,试探究t为何值时,△CGF的面积为$\frac{25}{8}$;
(3)设四边形CDEF落在第一象限内的图形面积为S,求S关于t的函数解析式,并求出S的最大值.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

20.下面有关三角形的内角的说法正确的是(  )
A.一个三角形中可以有两个直角
B.一个三角形的三个内角能都大于70°
C.一个三角形的三个内角能都小于50°
D.三角形中最大的内角不能小于60°

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

17.现定义运算“★”,对于任意实数a、b,都有a★b=a2-a+b,如3★5=32-3+5,若x★2=8,则实数x的值是x1=-2,x2=3.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

4.已知关于x的方程x2+(2k-3)x+k2-3=0有两个实数根x1,x2,且x1+x2=$\frac{1}{{x}_{1}}$+$\frac{1}{{x}_{2}}$,求k的值.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

14.如图1,△ABC内接于⊙O,∠BAC的平分线交⊙O于点D,交BC于点E(BE>EC),且BD=2$\sqrt{3}$.过点D作DF∥BC,交AB的延长线于点F.
(1)求证:DF为⊙O的切线;
(2)若∠BAC=60°,DE=$\sqrt{7}$,求图中阴影部分的面积;
(3)若$\frac{AB}{AC}$=$\frac{4}{3}$,DF+BF=8,如图2,求BF的长.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

1.如图,△ABC是⊙O的内接三角形,平移△ABC使点B与圆心O重合,A、C两点恰好落在圆上的D、E两点处.若AC=2$\sqrt{3}$,则平移的距离为2.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

18.解不等式:|x+3|>|x-5|+7.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

19.若m+$\frac{1}{m}$=$\sqrt{5}$,则非负数m-$\frac{1}{m}$的平方根是(  )
A.±2B.±1C.1D.2

查看答案和解析>>

同步练习册答案