分析 (1)连接OD,证∠ODF=90°即可.
(2)利用△ADF是30°的直角三角形可求得AF长,同理可利用△FHC中的60°的三角函数值可求得FG长.
解答 (1)证明:连接OD,
∵以等边三角形ABC的边AB为直径的半圆与BC边交于点D,
∴∠B=∠C=∠ODB=60°,
∴OD∥AC,
∵DF⊥AC,
∴∠CFD=∠ODF=90°,即OD⊥DF,
∵OD是以边AB为直径的半圆的半径,
∴DF是圆O的切线;
(2)∵OB=OD=$\frac{1}{2}$AB=6,且∠B=60°,
∴BD=OB=OD=6,
∴CD=BC-BD=AB-BD=12-6=6,
∵在Rt△CFD中,∠C=60°,
∴∠CDF=30°,
∴CF=$\frac{1}{2}$CD=$\frac{1}{2}$×6=3,
∴AF=AC-CF=12-3=9,
∵FG⊥AB,
∴∠FGA=90°,
∵∠FAG=60°,
∴FG=AFsin60°=$\frac{9\sqrt{3}}{2}$.
点评 本题主要考查了直线与圆的位置关系、等边三角形的性质、垂径定理等知识,判断直线和圆的位置关系,一般要猜想是相切,那么证直线和半径的夹角为90°即可;注意利用特殊的三角形和三角函数来求得相应的线段长.
科目:初中数学 来源: 题型:选择题
A. | y=x-1 | B. | y=x+1 | C. | y=-x-1 | D. | y=-x+1 |
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
A. | 250km | B. | 240km | C. | 200km | D. | 180km |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com