如图,小华发现电线杆AB的影子落在土坡的坡面CD和地面BC上,量得CD=8m,BC=20m,CD与地面成30°角,且此时测得1米木杆的影长为2m,则电线杆的高度为( )
A.14m B.28m C.(14+)m D.(14+)m
科目:初中数学 来源: 题型:
实际情境
某中学九年级学生步行到郊外春游.一班的学生组成前队,速度为4 km/h,二班的学生组成后队,速度为6 km/h.前队出发1 h后,后队才出发,同时,后队派一名联络员骑自行车在两队之间不间断地来回进行联络,他骑车的速度为12 km/h.
数学研究
若不计队伍的长度,如图,折线A-B-C、A-D-E分别表示后队、联络员在行进过程中,离前队的路程y(km)与后队行进时间x(h)之间的部分函数图象.
(1)求线段AB对应的函数关系式;
(2)求点E的坐标,并说明它的实际意义;
(3)联络员从出发到他折返后第一次与后队相遇的过程中,当x为何值时,他离前队的路程与他离后队的路程相等?
查看答案和解析>>
科目:初中数学 来源: 题型:
如图,在平面直角坐标系xoy中,菱形ABDC的边AB在x轴上,顶点C在y轴上,A(-6,0),C(0,8),抛物线y=ax2﹣10ax+c经过点C,且顶点M在直线BC上,则抛物线解析式为 ;若点P在抛物线上且满足S△PBD=S△PCD,则点P的坐标为 。
查看答案和解析>>
科目:初中数学 来源: 题型:
有一副直角三角板,在三角板ABC中,∠BAC=90°,AB=AC=6,在三角板DEF中,∠FDE=90°,DF=4,DE=,将这副直角三角板按如图(1)所示位置摆放,点B与点F重合,直角边BA与FD在同一条直线上,现固定三角板ABC,将三角板DEF沿射线BA方向平行移动,当点F运动到点A时停止运动。
(1)如图⑵,当三角板DEF运动到点D与点A重合时,设EF与BC交于点M,则∠EMC= 度;
(2)如图⑶,在三角板DEF运动过程中,当EF经过点C时,求FC的长;
(3)在三角板DEF运动过程中,设BF=,两块三角板重叠部分面积为,求与的函数解析式,并求出对应的取值范围。(13南充卷改编)
查看答案和解析>>
科目:初中数学 来源: 题型:
如图,在⊿ABC中,∠ABC和∠ACB的平分线相交于点O,过点O作EF∥BC交AB于E,交AC于F,过点O作OD⊥AC于D。下列四个结论:
①以E为圆心、BE为半径的圆与以F为圆心、CF为半径的圆外切;
②∠BOC=90°+∠A;
③EF不能成为⊿ABC的中位线;
④设OD=m,AE+AF=n,则S⊿AEF =mn.
其中正确的结论是:
A.①②③ B.①②④ C.②③④ D.①③④
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com