精英家教网 > 初中数学 > 题目详情
如图,四边形ABCD是正方形,点E是BC的中点,∠AEF=90°,EF交正方形外角的平分线CF于F.

(I)求证:AE=EF;
(Ⅱ)若将条件中的“点E是BC的中点”改为“E是BC上任意一点”,其余条件不变,则结论AE=EF还成立吗?若成立,请证明;若不成立,请说明理由.
分析:(1)取AB的中点H,连接EH,根据已知及正方形的性质利用ASA判定△AHE≌△ECF,从而得到AE=EF;
(2)成立,在AB上取BH=BE,连接EH,根据已知及正方形的性质利用ASA判定△AHE≌△ECF,从而得到AE=EF.
解答:(1)证明:取AB的中点H,连接EH;
∵四边形ABCD是正方形,
AE⊥EF;
∴∠1+∠AEB=90°,
∠2+∠AEB=90°
∴∠1=∠2,
∵BH=BE,∠BHE=45°,
且∠FCG=45°,
∴∠AHE=∠ECF=135°,AH=CE,
∴△AHE≌△ECF,
∴AE=EF;

(2)解:成立.
证明:在AB上取BH=BE,连接EH,
∵四边形ABCD为正方形,
∴AB=BC,
∵BE=BH,
∴AH=EC,
∵∠1=∠2,∠AHE=∠ECF=135°,
∴△AHE≌△ECF,
∴AE=EF.
点评:此题考查学生对正方形的性质及全等三角形判定的理解及运用,难度适中.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

如图,四边形ABCD的对角线AC与BD互相垂直平分于点O,设AC=2a,BD=2b,请推导这个四边形的性质.(至少3条)
(提示:平面图形的性质通常从它的边、内角、对角线、周长、面积等入手.)

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,四边形ABCD的对角线AC、BD交于点P,过点P作直线交AD于点E,交BC于点F.若PE=PF,且AP+AE=CP+CF.
(1)求证:PA=PC.
(2)若BD=12,AB=15,∠DBA=45°,求四边形ABCD的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,四边形ABCD,AB=AD=2,BC=3,CD=1,∠A=90°,求∠ADC的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,四边形ABCD为正方形,E是BC的延长线上的一点,且AC=CE,求∠DAE的度数.

查看答案和解析>>

同步练习册答案