精英家教网 > 初中数学 > 题目详情
16.如图,∠B、∠D的两边分别平行.
(1)在图①中,∠B与∠D的数量关系为相等.
(2)在图②中,∠B与∠D的数量关系为互补.
(3)用一句话归纳的结论为如果两个角的两边分别平行,那么这两个角相等或互补.试选一说明理由.

分析 本题主要利用两直线平行,同位角相等,两直线平行,同旁内角互补及两直线平行内错角相等进行解答.

解答 解:(1)相等;
(2)互补;
(3)如果两个角的两条边分别平行,那么这两个角的关系是相等或互补.
图(1)中,∵AB∥CD,
∴∠B=∠1,
∵BE∥DF,
∴∠1=∠D,
∴∠B=∠D.
图(2)中,∵AB∥CD,
∴∠B=∠2,
∵BE∥DF,
∴∠2+∠D=180°,
∴∠B+∠D=180°.

点评 本题主要考查对平行线的性质的理解和掌握,根据平行线的性质进行证明是解此题的关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

6.在平面直角坐标系中,如果点P的横坐标和纵坐标相等,则称点P为和谐点.例如点(1,1),(-$\frac{1}{3}$,-$\frac{1}{3}$),(-$\sqrt{2}$,-$\sqrt{2}$),…,都是和谐点.
(1)分别判断函数y=-2x+1和y=x2+1的图象上是否存在和谐点,若存在,求出其和谐点的坐标;
(2)若二次函数y=ax2+4x+c(a≠0)的图象上有且只有一个和谐点($\frac{3}{2}$,$\frac{3}{2}$),且当0≤x≤m时,函数y=ax2+4x+c-$\frac{3}{4}$(a≠0)的最小值为-3,最大值为1,求m的取值范围.
(3)直线l:y=kx+2经过和谐点P,与x轴交于点D,与反比例函数G:y=$\frac{n}{x}$的图象交于M,N两点(点M在点N的左侧),若点P的横坐标为1,且DM+DN<3$\sqrt{2}$,请直接写出n的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

7.如图,在直角坐标系中,半径为$\sqrt{5}$,圆心为M的⊙M经过A,B,C三点,已知点M的纵坐标为-1,点C的坐标为(0,3),OA:OB=1:3,⊙M与y轴交于点D
(1)求A,B,D,M的坐标
(2)若点E是过A,B,C三点的抛物线的顶点,求证:△BCE是直角三角形;
(3)设∠CBE=β,求sin(45°-β)的值;
(4)探究坐标轴上是否存在点P,使得以点P,A,C为顶点的三角形与三角形BCE相似?若存在,请指出点P的位置,并直接写出点P的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

4.“珍重生命,注意安全!”同学们在上下学途中一定要注意骑车安全.小明骑单车上学,当他骑了一段时,想起要买某本书,于是又折回到刚经过的新华书店,买到书后继续去学校,以下是他本次所用的时间与路程的关系示意图.根据图中提供的信息回答下列问题:

(1)小明家到学校的路程是多少米?
(2)小明在书店停留了多少分钟?
(3)本次上学途中,小明一共行驶了多少米?一共用了多少分钟?
(4)我们认为骑单车的速度超过300米/分钟就超越了安全限度.问:在整个上学的途中哪个时间段小明骑车速度最快,速度在安全限度内吗?

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

11.如果$\left\{\begin{array}{l}{x=-1}\\{y=2}\end{array}\right.$是方程组$\left\{\begin{array}{l}{ax+by=0}\\{bx-cy=1}\end{array}\right.$的解,那么,下列各式中成立的是(  )
A.a+4c=2B.4a+c=2C.a+4c+2=0D.4a+c+2=0

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

1.下列各式中,正确的是(  )
A.$\frac{6-2x}{-x+3}$=2B.$\frac{a-b}{(a-b)(a+b)}$=0C.$\frac{(a-b)^{3}}{(b-a)^{3}}$=1D.$\frac{(a-b)^{2}}{(b-a)^{2}}$=-1

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

8.先化简,再求值:$\frac{4{a}^{3}-a{b}^{2}}{4{a}^{3}-4{a}^{2}b+a{b}^{2}}$,其中a=0.5,b=2.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

5.在下列实数中,无理数是(  )
A.0.151515…B.πC.-4D.$\frac{22}{9}$

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

6.【操作探究】
如图1,四边形ABCD是正方形,E是CD边的中点,把△ADE沿AE折叠后AD的延长线交边BC与M,请判断线段AM,AD,MC之间的数量关系:AM=AD+CM;
【拓展延伸】若四边形ABCD是长与宽不相等的矩形,其他条件不变,如图2,上一题中的结论是否成立?若成立,请给予证明;若不成立,请说明理由;
【解决问题】如图3四边形ABCD中,AB⊥BC,DC⊥BC,垂直分别是B、C,AB=2CD,M是线段BC上一点,且∠AMB=2∠MAD.已知图中两个三角形的面积S△ADM=S1,S△CDM=S2,请用S1、S2表示S△ABM

查看答案和解析>>

同步练习册答案