精英家教网 > 初中数学 > 题目详情

如果点A1(x1,y1)和点A1(x2,y2)是双曲线上的两个点,且当时x1<x2<0时,y1<y2,那么函数数学公式和函数y=kx-k的图象大致是


  1. A.
  2. B.
  3. C.
  4. D.
C
分析:由于当x1<x2<0时,y1<y2,可判断反比例函数图象分布在第二、四象限,得到k<0,然后根据一次函数性质判断y=kx-k的图象过第二、四象限,且与y轴的交点在x轴上方.
解答:∵当x1<x2<0时,y1<y2
∴y=的k<0,
∴反比例函数图象分布在第二、四象限,
∴y=kx-k的图象过第二、四象限,且与y轴的交点在x轴上方.
故选C.
点评:本题考查了反比例函数的图象:反比例函数y=(k≠0)的图象为双曲线,当k>0,图象分布在第一、三象限;当k<0,图象分布在第二、四象限.也考查了一次函数的图象.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

已知:二次函数y=x2-4x+m的图象与x轴交于不同的两点A(x1,0)、B(x2,0)(x1<x2),其顶点是点C,对称轴与x轴的交于点D.
(1)求实数m的取值范围;
(2)如果(x1+1)(x2+1)=8,求二次函数的解析式;
(3)把(2)中所得的二次函数的图象沿y轴上下平移,如果平移后的函数图象与x轴交于点A1、B1,顶点为点C1,且△A1B1C1是等边三角形,求平移后所得图象的函数解析式.

查看答案和解析>>

科目:初中数学 来源:初中数学 三点一测丛书 八年级数学 下 (江苏版课标本) 江苏版 题型:013

反比例函数中系数k的几何意义

  反比例函数y=(k≠0)任取一点M(a,b),过M作MA⊥x轴,MB⊥y轴,所得矩形OAMB的面积为S=MA·MB=|b|·|a|=|ab|.又因为b=,故ab=k,所以S=|k|(如图(1)).

  这就是说,过双曲线上任意一点作x轴、y轴的垂线,所得的矩形面积为|k|.这就是k的几何意义,会给解题带来方便.现举例如下:

  例1:如(2)图,已知点P1(x1,y1)和P2(x2,y2)都在反比例函数y=(k<0)的图像上,试比较矩形P1AOB与矩形P2COD的面积大小.

  解答:=|k|

  =|k|

  故

  例2:如图(3),在y=(x>0)的图像上有三点A、B、C,经过三点分别向x轴引垂线,交x轴于A1、B1、C1三点,连结OA、OB、OC,记△OAA1、△OBB1、△OCC1的面积分别为S1、S2、S3,则有(  )

  A.S1=S2=S3

  B.S1<S2<S3

  C.S3<S1<S2

  D.S1>S2>S3

  解答:∵|k|=

  |k|=

  |k|=

  S1=S2=S3,故选A.

  例3:一个反比例函数在第三象限的图像如图(4)所示,若A是图像任意一点,AM⊥x轴,垂足为M,O是原点,如果△AOM的面积是3,那么这个反比例函数的解析式是________.

  解答:∵S△AOM|k|

  又S△AOM=3,

  ∴|k|=3,|k|=6

  ∴k=±6

  又∵曲线在第三象限

  ∴k>0∴k=6

  ∴所以反比例函数的解析式为y=

  根据是述意义,请你解答下题:

  如图(5),过反比例函数y=(x>0)的图像上任意两点A、B分别作轴和垂线,垂足分别为C、D,连结OA、OB,设AC与OB的交点为E,△AOE与梯形ECDB的面积分别为S1、S2,比较它们的大小,可得

[  ]

A.S1>S2

B.S1=S2

C.S1<S2

D.大小关系不能确定

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

已知:二次函数y=x2-4x+m的图象与x轴交于不同的两点A(x1,0)、B(x2,0)(x1<x2),其顶点是点C,对称轴与x轴的交于点D.
(1)求实数m的取值范围;
(2)如果(x1+1)(x2+1)=8,求二次函数的解析式;
(3)把(2)中所得的二次函数的图象沿y轴上下平移,如果平移后的函数图象与x轴交于点A1、B1,顶点为点C1,且△A1B1C1是等边三角形,求平移后所得图象的函数解析式.

查看答案和解析>>

科目:初中数学 来源:2007年上海市闵行区中考数学二模试卷(解析版) 题型:解答题

已知:二次函数y=x2-4x+m的图象与x轴交于不同的两点A(x1,0)、B(x2,0)(x1<x2),其顶点是点C,对称轴与x轴的交于点D.
(1)求实数m的取值范围;
(2)如果(x1+1)(x2+1)=8,求二次函数的解析式;
(3)把(2)中所得的二次函数的图象沿y轴上下平移,如果平移后的函数图象与x轴交于点A1、B1,顶点为点C1,且△A1B1C1是等边三角形,求平移后所得图象的函数解析式.

查看答案和解析>>

同步练习册答案