精英家教网 > 初中数学 > 题目详情
在正方形ABCD中,点E是BC边的中点,过B点作BG⊥AE于点G,交AC于H,交CD于点F。(1)求证:点F为边BC的中点;(2)如果正方形的边长为4,求CH的长度;(3)如果点M是BC上的一点,且AM=MC+CD,
探究∠MAD与∠BAE有怎样的数量关系,说明理由。
(1)证明:∵在正方形ABCD中,
∴AB=BC ∠ABC=∠BCD=90°
∵BG⊥AE
∴∠AGB=90°
∴∠ABG+∠BAG=90°
∠ABG+∠GBE=90°
∴ ∠BAG=∠GBE
∴△ABE≌△BCF   
∴BE="CF"
∵点E是BC边的中点 ∴BE=BC 
∴ CF=BC=CD   
∴点F为边BC的中点
(2)∵ AB="BC=4" , ∠ABC =90°     ∴AC=
∵在正方形ABCD中, ∴AB∥CD ∴CH:HA=CF:AB
由(1)知CF=AB   ∴CH:HA=CF:AB=1:2
∴CH=AH=AC=       
(3)∠MAD=2∠BAE 理由如下:           
连接AF并延长交BC的延长线于点N,

∵点F为边BC的中点     ∴可证△ADF≌△NCF
∴CN=AD,∠N= ∠CAN
∵在正方形ABCD中,  ∴AD=DC=DN,
∵ AM=MC+CD  ∴MC+CN="MC+CD=NM"
∴AM=MN    ∴∠N=∠MAN
∴∠MAD=2∠DAF
由(1)可知点F为CD的中点,
∴DF=BE  ∠ABE=∠ADF=90°   AB=AD
△ABE≌△ADF
∴∠DAF=∠BAE
∴∠MAD=2∠BAE                     
(1)利用BG⊥AE,得出∠AGB=90°,进而得出∠BAG=∠GBE,利用AAS得出△ABE≌△BCF,即可得出点F为边DC的中点;
(2)根据AB∥CD,得出CH:HA=CF:AB,由(1)知CF=AB,得出CH:HA=CF:AB=1:2,进而得出CH的长度;
(3)首先证明△ADF≌△NCF,得出CN=AD,∠N=∠CAN,进而得出∠MAD=∠AMB=2∠DAF,再求出△ABE≌△ADF(SAS),得出∠DAF=∠BAE,∠MAD=2∠BAE
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

四边形ABCD中,∠A=140°,∠D=80°.
(1)如图①,若∠B=∠C,试求出∠C的度数;
(2)如图②,若∠ABC的角平分线交DC于点E,且BE∥AD,试求出∠C的度数;
(3)如图③,若∠ABC和∠BCD的角平分线交于点E,试求出∠BEC的度数.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

如图所示,正方形的面积为12,是等边三角形,点在正方形内,在对角线上有一点, 使的和最小,则这个最小值为(    )
              
A.B.C.3D.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如图,在矩形ABCD中,点E是边AD上一点,BC=2AB,AD=BE,那么∠ECD=    ▲    度

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,菱形ABCD的边长为2cm,∠DAB=60°.点P从A点出发,以cm/s的速度,沿AC向C作匀速运动;与此同时,点Q也从A点出发,以1cm/s的速度,沿射线AB作匀速运动.当P运动到C点时,P、Q都停止运动.设点P运动的时间为ts.
(1)当P异于A.C时,请说明PQ∥BC;
(2)以P为圆心、PQ长为半径作圆,请问:在整个运动过程中,t为怎样的值时,⊙P与边BC分别有1个公共点和2个公共点?

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

在△ABC中(1)若∠A=60°,AB、AC边上的高CE、BD交于点O。求∠BOC的度数。

(2)若∠A为钝角,AB、AC边上的高CE、BD所在直线交于点O,画出图形,并用量角器量一量∠BAC+∠BOC=______°,再用你已学过的数学知识加以说明。
(3)由(1)(2)可以得到,无论∠A为锐角还是钝角,总有∠BAC+∠BOC=____°。

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

从一般到特殊是一种重要的数学思想,右图通过类比的方法展现了认识三角形与平行四边形图形特征的过程,你认为“?”处的图形名称是               

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,梯形中,分别是两底的中点,连结,若,求的长。

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,△ABC与△ADE都是等边三角形(三条边都相等,三个内角都相等的三角形),连结BD、CE交点记为点F.
(1)BD与CE相等吗?请说明理由.
(2)你能求出BD与CE的夹角∠BFC的度数吗?
(3)若将已知条件改为:四边形ABCD与四边形AEFG都是正方形,连结BE、DG交点记为点M(如图).请直接写出线段BE和DG之间的关系?
      

查看答案和解析>>

同步练习册答案