精英家教网 > 初中数学 > 题目详情
3.半径为1的两圆放置位置如图所示,一圆的直径恰好是另一圆的切线,圆心均为切点,则阴影部分的面积为$\frac{\sqrt{3}}{2}$-$\frac{π}{6}$.

分析 如图,连接AO1,BO1,AO2,BO2,O1O2,AB,于是得到四边形AO1BO2是菱形,△AO1O2是等边三角形,求得∠O1AO2=60°,∠AO1B=120°,根据扇形和三角形的面积公式即可得到结论.

解答 解:如图,连接AO1,BO1,AO2,BO2,O1O2,AB,
则四边形AO1BO2是菱形,△AO1O2是等边三角形,
∴∠O1AO2=60°,∠AO1B=120°,
∴S${\;}_{弓形A{O}_{1}B}$=S${\;}_{扇形A{O}_{2}B}$-S${\;}_{△AB{O}_{2}}$=$\frac{120•π×{1}^{2}}{360}$-$\frac{1}{2}$×$\sqrt{3}$×$\frac{1}{2}$=$\frac{π}{3}$-$\frac{\sqrt{3}}{4}$,
∴阴影部分的面积=S半圆-2S${\;}_{弓形A{O}_{1}B}$=$\frac{π}{2}$-2($\frac{π}{3}$-$\frac{\sqrt{3}}{4}$)=$\frac{\sqrt{3}}{2}$-$\frac{π}{6}$;
故答案为:$\frac{\sqrt{3}}{2}$-$\frac{π}{6}$;

点评 本题考查了扇形的面积的计算,菱形的判定和性质,正确的作出辅助线是解题的关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:填空题

13.如图,平行四边形ABCD中,AE⊥BC,AF⊥CD,垂足分别为E,F,连结EF,给出下列判断:①若△AEF是等边三角形,则∠B=60°,②若∠B=60°,则△AEF是等边三角形,③若AE=AF,则平行四边形ABCD是菱形,④若平行四边形ABCD是菱形,则AE=AF,其中,结论正确的是①③④(只需填写正确结论的序号).

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

14.使得式子$\frac{\sqrt{x-1}}{x-2}$有意义的字母x的取值范围是x≥1且x≠2.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

11.(1)计算:($\frac{1}{2}$)-1-$\root{3}{27}$-(π-2017)0+$\sqrt{3}$tan30°
(2)解方程:$\frac{x-3}{x-2}$+1=$\frac{3}{x-2}$.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

18.如图,矩形ABCD中,点E为射线BC上的一个动点,连接AE,以AE为对称轴折叠△AEB,得到△AEB′,点B的对称点为点B′,若AB=5,BC=3,当点B′落在射线CD上时,线段BE的长为$\frac{5}{3}$或15.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

8.如图,二次函数y=ax2+bx+c(a≠0)的图象与x轴交于A,B两点,与y轴交于点C,且OA=OC.则下列结论:①abc<0;②$\frac{{b}^{2}-4ac}{4a}$>0;③ac-b+1=0;④2a+b=0其中正确结论的个数是(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

15.计算:-|-3|+$\root{3}{8}$+tan60°-20

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

12.综合与探究:如图,抛物线y=ax2+bx+$\frac{12}{5}$与x轴交于A(-$\frac{9}{5}$,0),B($\frac{16}{5}$,0)两点,与y轴交于点C,连接AC,BC,一动点P从点A出发,沿线段AB向终点B以每秒1个单位长度的速度运动;同时,点Q从点B出发,以相同的速度沿线段BC向终点C运动,当其中一个动点到达终点时,另一个动点也随之停止运动,连接PQ.设P,Q两点运动时间为t秒.
(1)求抛物线的表达式;
(2)在点P,Q运动的过程中,△BPQ能否成为等腰三角形?若能,请求出t的值;若不能,请说明理由;
(3)作点B关于直线PQ的对称点为D,连接PD,QD.当四边形APQC的面积最小时,判断点D是否在该抛物线上.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

13.解不等式:$\frac{x-2}{10}$-2≤2x-$\frac{4}{5}$.

查看答案和解析>>

同步练习册答案