精英家教网 > 初中数学 > 题目详情

如图,在等腰梯形ABCD中,AB=DC=5,AD=4,BC=10.点E在下底边BC上,点F在腰AB上.

(1)若EF平分等腰梯形ABCD的周长,设BE长为,试用含的代数式表示△BEF的面积;

(2)是否存在线段EF将等腰梯形ABCD的周长和面积同时平分?若存在,求出此BE的长;若不存在,请说明理由;

(3)是否存在线段EF将等腰梯形ABCD的周长和面积同时分成1︰2的两部分?若存在,求此时BE的长;若不存在,请说明理由.

 

【答案】

(1);(2)BE=7;(3)不存在

【解析】

试题分析:(1)根据过点F作FG⊥BC于G,过点A作AK⊥BC于K,得出BF与FG的长即可求出;

(2)利用(1)中所求,解一元二次方程即可求出.

(3)仍然按照(1)和(2)的步骤和方法去做就可以了,注意不是分成相等的两份,而是1:2就可以了,得到关于x的一元二次方程,先求出根的判别式△,由于△<0,故不存在实数根.

(1)过点F作FG⊥BC于G,过点A作AK⊥BC于K,

   

△BEF的面积为

(2)根据题意,得     

解得 .             

时,舍去;

时,符合题意

所以存在符合要求的线段EF,此时BE=7;

(3)假设存在线段EF将等腰梯形ABCD的周长和面积同时分成1:2的两部分.

∵等腰梯形ABCD的周长=24,等腰梯形ABCD的面积=28,AD+DC=9>8 

∴只有BE+BF=8,△BEF的面积=  

设BE长为,则,△BEF的面积 

方程无解,

∴不存在线段EF将等腰梯形ABCD的周长和面积同时分成1︰2的两部分.

考点:本题主要考查了相似三角形的判定,根的判别式和解一元二次方程

点评:解答本题的关键是熟练掌握当时,方程有两个不相等实数根;当时,方程的两个相等的实数根;当时,方程没有实数根。

 

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

如图,在等腰梯形ABCD中,AB∥DC,AB=8cm,CD=2cm,AD=6cm.点P从点A出发,以2cm/s的速度沿AB向终点B运动;点Q从点C出发,以1cm/s的速度沿CD、DA向终点A运动(P、Q两点中,有一个点运动到终点时,所有运动即终止).设P、Q同时出发并运动了t秒.
(1)当PQ将梯形ABCD分成两个直角梯形时,求t的值;
(2)试问是否存在这样的t,使四边形PBCQ的面积是梯形ABCD面积的一半?若存精英家教网在,求出这样的t的值;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

10、如图,在等腰梯形ABCD中,AD∥BC,AB=DC,E为AD的中点,求证:BE=CE.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网已知:如图,在等腰梯形ABCD中,AD∥BC,AB=DC,点E、F分别在AB、DC上,且BE=3EA,CF=3FD.
求证:∠BEC=∠CFB.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•广州)如图,在等腰梯形ABCD中,BC∥AD,AD=5,DC=4,DE∥AB交BC于点E,且EC=3,则梯形ABCD的周长是(  )

查看答案和解析>>

科目:初中数学 来源:中考必备’04全国中考试题集锦·数学 题型:044

如图,在等腰梯形AB∥⊥CD中,BC∥AD,BC=8,AD=20,AB=DC=10,点P从A点出发沿AD边向点D移动,点Q自A点出发沿A→B→C的路线移动,且PQ∥DC,若AP=x,梯形位于线段PQ右侧部分的面积为S.

  

(1)分别求出当点Q位于AB、BC上时,S与x之间的函数关系式,并写出自变量x的取值范围;

(2)当线段PQ将梯形AB∥⊥CD分成面积相等的两部分时,x的值是多少?

(3)当(2)的条件下,设线段PQ与梯形AB∥⊥CD的中位线EF交于O点,那么OE与OF的长度有什么关系?借助备用图说明理由;并进一步探究:对任何一个梯形,当一直线l经过梯形中位线的中点并满足什么条件时,一定能平分梯形的面积?(只要求说出条件,不需要证明)

查看答案和解析>>

同步练习册答案