精英家教网 > 初中数学 > 题目详情

【题目】下面是小华同学设计的作三角形的高线的尺规作图的过程.

已知:如图1ABC

求作:AB边上的高线.

作法:如图2

①分别以AC为圆心,大于

为半径作弧,两弧分别交于点DE

作直线DE,交AC于点F

以点F为圆心,FA长为半径作圆,交AB的延长线于点M

连接CM

CM 为所求AB边上的高线.

根据上述作图过程,回答问题:

1)用直尺和圆规,补全图2中的图形;

2)完成下面的证明:

证明:连接DADCEAEC

∵由作图可知DA=DC =EA=EC

DE是线段AC的垂直平分线.

FA=FC

AC是⊙F的直径.

∴∠AMC=______°___________________________________)(填依据),

CMAB

CM就是AB边上的高线.

【答案】1)补图见解析;(290,直径所对的圆周角是直角.

【解析】

1)根据要求作出图形即可.
2)根据线段的垂直平分线的性质以及圆周角定理证明即可.

解:(1)如图线段AE即为所求.


2)连接DADBEAEB
DA=DB
∴点D在线段AB的垂直平分线上(到线段两端距离相等的点在这条线段的垂直平分线上),
EA=EB
∴点E在线段AB的垂直平分线上.
DE是线段AB的垂直平分线.
FA=FB
AB是⊙F的直径.
∴∠AGB=90°(直径所对的圆周角是直角),
AGBC
AG就是BC边上的高线.
故答案为:90°,直径所对的圆周角是直角.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】定义:同时经过x轴上两点ABmn)的两条抛物线称为同弦抛物线.如抛物线C1与抛物线C2是都经过的同弦抛物线.

1)引进一个字母,表达出抛物线C1的所有同弦抛物线;

2)判断抛物线C3与抛物线C1是否为同弦抛物线,并说明理由;

3)已知抛物线C4C1的同弦抛物线,且过点,求抛物线C对应函数的最大值或最小值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】为营造安全出行的良好交通氛围,实时监控道路交迸,某市交管部门在路口安装的高清摄像头如图所示,立杆MA与地面AB垂直,斜拉杆CDAM交于点C,横杆DEAB,摄像头EFDE于点E,AC=55,CD=3,EF=0.4,CDE=162°。

(1)求∠MCD的度数;

(2)求摄像头下端点F到地面AB的距离。(精确到百分位)

(参考数据;sin72°=0.95,cos72°≈0.31,tan72°=3.08,sin18°≈0.31,cos18°≈0.95,tan18°≈0.32)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图所示的网格是正方形网格,线段AB绕点A顺时针旋转αα180°)后与⊙O相切,则α的值为_____

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,抛物线y=﹣x2+bx+cx轴于A(﹣30),B40)两点,与y轴交于点C,连接ACBC

1)求此抛物线的表达式;

2)求过BC两点的直线的函数表达式;

3)点P是第一象限内抛物线上的一个动点.过点PPMx轴,垂足为点MPMBC于点Q.试探究点P在运动过程中,是否存在这样的点Q,使得以ACQ为顶点的三角形是等腰三角形.若存在,请求出此时点P的坐标,若不存在,请说明理由;

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知在平面直角坐标系中,点,以线段为直径作圆,圆心为,直线于点,连接.

1)求证:直线的切线;

2)点轴上任意一动点,连接于点,连接

①当时,求所有点的坐标 (直接写出);

②求的最大值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某企业生产并销售某种产品,整理出该商品在第()天的售价函数关系如图所示,已知该商品的进价为每件30元,第天的销售量为件.

1)试求出售价之间的函数关系是;

2)请求出该商品在销售过程中的最大利润;

3)在该商品销售过程中,试求出利润不低于3600元的的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,直线yx+bb2)与x轴,y轴分别交于HG两点,边长为2的正方形OABC的边OAOC分别在x轴,y轴上,点B在第一象限,正方形OABC绕点B逆时针旋转,OA的对应边O'A'恰好落在直线GH上,则b的值为(  )

A.4B.C.5D.6

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,AB为⊙O直径,CD为弦,ABCDE,连接COAD,∠BAD20°,下列结论中正确的有(  )①CEOE②∠C50° AD2OE

A.①④B.②③C.②③④D.①②③④

查看答案和解析>>

同步练习册答案