分析 (1)过点C作CD⊥OB于点D,利用一次函数图象上点的坐标特征可求出点B的坐标,根据等边三角形的性质即可得出OC、OD的长度,再利用勾股定理可求出CD的长度,结合点C的位置即可得出点C的坐标;
(2)根据点C的纵坐标利用一次函数图象上点的坐标特征即可求出点C′的坐标,此题得解.
解答 解:(1)过点C作CD⊥OB于点D,如图所示.
当x=0时,y=2,
∴点B的坐标为(0,2),
∴OB=2.
∵△BOC为等边三角形,CD⊥BO,
∴OC=OB=2,OD=$\frac{1}{2}$BO=1,
∴CD=$\sqrt{O{C}^{2}-O{D}^{2}}$=$\sqrt{3}$.
∴点C的坐标为($\sqrt{3}$,1).
(2)当y=1时,有x+2=1,
解得:x=-1,
∴点C′的坐标为(-1,1).
点评 本题考查了一次函数图象上点的坐标特征、等边三角形的性质以及勾股定理,根据等边三角形的性质结合勾股定理求出CD、OD的长度是解题的关键.
科目:初中数学 来源: 题型:选择题
A. | ∠A:∠B:∠C=3:4:5 | B. | ∠A=$\frac{1}{2}$∠B=$\frac{1}{3}$∠C | C. | ∠B=50°,∠C=40° | D. | a=5,b=12,c=13 |
查看答案和解析>>
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
A. | 100tanα | B. | 100cotα | C. | 100sinα | D. | 100cosα |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com