分析 (1)分别令x=0、y=0,求得对应y和x的值,从而的得到点A、B的坐标,然后依据三角形的面积公式可求得k1的值,然后由直线的解析式可求得点C的坐标,由点C的坐标可求得反比例函数的解析式;
(2)由函数的对称性可求得D(6,1),从而可求得x的值范围,然后求得当x=2、3、4、5时,一次函数和反比例函数对应的函数值,从而可得到整点的坐标.
解答 解:(1)∵当x=0时,y=7,当y=0时,x=-$\frac{7}{{k}_{1}}$,
∴A(-$\frac{7}{{k}_{1}}$,0)、B(0、7).
∴S△AOB=$\frac{1}{2}$|OA|•|OB|=$\frac{1}{2}$×(-$\frac{7}{{k}_{1}}$)×7=$\frac{49}{2}$,解得k1=-1.
∴直线的解析式为y=-x+7.
∵当x=1时,y=-1+7=6,
∴C(1,6).
∴k2=1×6=6.
∴反比例函数的解析式为y=$\frac{6}{x}$.
(2)∵点C与点D关于y=x对称,
∴D(6,1).
当x=2时,反比例函数图象上的点为(2,3),直线上的点为(2,5),此时可得整点为(2,4);
当x=3时,反比例函数图象上的点为(3,2),直线上的点为(3,4),此时可得整点为(3,3);
当x=4时,反比例函数图象上的点为(4,$\frac{3}{2}$),直线上的点为(4,3),此时可得整点为(4,2);
当x=5时,反比例函数图象上的点为(5,$\frac{6}{5}$),直线上的点为(5,2),此时,不存在整点.
综上所述,符合条件的整点有(2,4)、(3,3)、(4,2).
点评 本题主要考查的是反比例函数与一次函数的交点问题,依据三角形的面积求得k1的值是解题的关键.
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
A. | 3x2+4x=1 | B. | 3x2-4x=1 | C. | 3x2-4x-1=0 | D. | 3x2+4x-1=0 |
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
A. | x2-2x=5 | B. | 2x2-4x=5 | C. | x2+4x=5 | D. | 4x2+4x=5 |
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com