精英家教网 > 初中数学 > 题目详情
在平面直角坐标系中,直线与x轴、y轴分别交于A,B两点.现有半径为1的动圆P,且P的坐标为(n,0),若动圆P与直线AB交,则n的取值范围是   
【答案】分析:首先求出直线与x轴、y轴分别交于A,B两点的坐标,再分别讨论当P在直线AB的左侧和右侧分别和直线相切时的n的值,即可求出动圆P与直线AB交时,n的取值范围.
解答:解:直线与x轴、y轴分别交于A,B,
设y=0,则
∴x=3,
∴A(3,0),
∵b=-
∴B(0,-),
当p在直线AB的左侧时,设圆p和直线AB相切于D,连接PD,
在Rt△ABD中,PD=1,
∵OB=,AO=1,
∴tan∠BAO==
∴∠BAO=60°,
∴∠DPA=30°,
∴cos30°===
∴AP=
∴OP=AP-OA=-1,
当点p在直线AB的右侧时,AP=
∴OP=OA+AP=1+
∴若动圆P与直线AB交,则n的取值范围是-1<n<+1,
故答案为:-1<n<+1.
点评:本题考查了一次函数和坐标轴的交点坐标和判断直线和圆的位置关系:设⊙O的半径为r,圆心O到直线l的距离为d.①直线l和⊙O相交?d<r,②直线l和⊙O相切?d=r,③直线l和⊙O相离?d>r.解题的关键是求出圆和直线相切时的n的值,进而确定相交的取值范围.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

28、在平面直角坐标系中,点P到x轴的距离为8,到y轴的距离为6,且点P在第二象限,则点P坐标为
(-6,8)

查看答案和解析>>

科目:初中数学 来源: 题型:

10、在平面直角坐标系中,点P1(a,-3)与点P2(4,b)关于y轴对称,则a+b=
-7

查看答案和解析>>

科目:初中数学 来源: 题型:

在平面直角坐标系中,有A(2,3)、B(3,2)两点.
(1)请再添加一点C,求出图象经过A、B、C三点的函数关系式.
(2)反思第(1)小问,考虑有没有更简捷的解题策略?请说出你的理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在平面直角坐标系中,开口向下的抛物线与x轴交于A、B两点,D是抛物线的顶点,O为精英家教网坐标原点.A、B两点的横坐标分别是方程x2-4x-12=0的两根,且cos∠DAB=
2
2

(1)求抛物线的函数解析式;
(2)作AC⊥AD,AC交抛物线于点C,求点C的坐标及直线AC的函数解析式;
(3)在(2)的条件下,在x轴上方的抛物线上是否存在一点P,使△APC的面积最大?如果存在,请求出点P的坐标和△APC的最大面积;如果不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

18、在平面直角坐标系中,把一个图形先绕着原点顺时针旋转的角度为θ,再以原点为位似中心,相似比为k得到一个新的图形,我们把这个过程记为【θ,k】变换.例如,把图中的△ABC先绕着原点O顺时针旋转的角度为90°,再以原点为位似中心,相似比为2得到一个新的图形△A1B1C1,可以把这个过程记为【90°,2】变换.
(1)在图中画出所有符合要求的△A1B1C1
(2)若△OMN的顶点坐标分别为O(0,0)、M(2,4)、N(6,2),把△OMN经过【θ,k】变换后得到△O′M′N′,若点M的对应点M′的坐标为(-1,-2),则θ=
0°(或360°的整数倍)
,k=
2

查看答案和解析>>

同步练习册答案