精英家教网 > 初中数学 > 题目详情
5.以边长为2的正方形的中心O为端点,引两条相互垂直的射线,分别与正方形的边交于A、B两点,则线段AB的取值范围是$\sqrt{2}$≤AB≤2.

分析 先证明△AOE≌△DOF,进而得到OE=OF,此为解决该题的关键性结论;求出OE的范围,借助勾股定理即可解决问题.

解答 解:如图所示:
∵四边形CDEF是正方形,
∴∠OCD=∠ODB=45°,∠COD=90°,OC=OD,
∵AO⊥OB,
∴∠AOB=90°,
∴∠COA+∠AOD=90°,∠AOD+∠DOB=90°,
∴∠COA=∠DOB,
在△COA和△DOB中,$\left\{\begin{array}{l}{∠OCA=∠ODB}\\{OC=OD}\\{∠AOC=∠DOB}\end{array}\right.$,
∴△COA≌△DOB(ASA),
∴OA=OB,
设OA=OB=a,
∵∠AOB=90°,
∴△AOB是等腰直角三角形,
由勾股定理得:AB2=OA2+OB2=2a2
由题意可得:1≤a≤$\sqrt{2}$,
∴$\sqrt{2}$≤AB≤2,
故答案为$\sqrt{2}$≤AB≤2.

点评 该题以正方形为载体,主要考查了正方形的性质、全等三角形的判定与性质等几何知识点的应用问题;牢固掌握全等三角形的判定等几何知识点,是灵活解题的基础和关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

2.A校和B校分别库存有电脑12台和6台,现决定支援给C校10台和D校8台.已知从A校调运一台电脑到C校和D校的运费分别为40元和10元;从B校调运一台电脑到C校和D校的运费分别为30元和20元.

(1)设A校运往C校的电脑为x台,请仿照下图,求总运费W(元)关于x的函数关系式;
(2)求出总运费最低的调运方案,最低运费是多少?

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

3.如图,在△ABC中,∠ACB=58°,若P为△ABC内一点,且∠1=∠2,则∠BPC=122°.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

20.如图,AB是⊙O的直径,点D是⊙O上的一点,连接AD,BD.过点B作⊙O的切线BC交AD的延长线于点C,E为BC的中点,连接DE并延长交AB的延长线于点F.
(1)求证:DF为⊙O的切线;
(2)若EF=2DE=4,求⊙O的半径.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

7.如图,正△ABC的边长为2,⊙C的半径为1,点D在⊙C上,以AD为边作正△ADE,连接CD、CE、BE.
(1)求证:BE=CD;
(2)∠BAE为多少度时,AD为⊙C的切线?
(3)请直接写出CE的最大值和最小值.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

10.二次函数y=-$\frac{1}{2}$x2+6的图象与x轴交于A、B两点(A在左侧),顶点为N.
(1)设点P、Q为该二次函数的图象上在x轴上方的两个动点,试猜想:是否存在这样的点P,Q,使△AQP≌△ABP?如果存在,请举例验证你的猜想;如果不存在,请说明理由;
(2)若直线AK与y轴交于点K,且△AOK∽△NOA,求点K的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

17.如图,直径为1个单位长度的圆上一点A在数轴上的坐标为-1,该圆沿数轴向右滚动2014周,A点到达位置A′处,则A′的坐标为2014π-1.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

14.如图,在平面直角坐标系中,抛物线y=ax2+bx+4交x轴于点A(-2,0)和B(B在A右),交y轴于点C,直线y=2kx-12k经过点B,交y轴于点D,CD=OD.
(1)求抛物线的解析式;
(2)若P是第一象限抛物线上的一点,过P点作PH⊥BD于H,设P点的横坐标是t,求当PH的长最大时P点坐标;
(3)在(2)的条件下,将射线PH绕着点P顺时针方向旋转45°交抛物线于点Q,求Q点关于直线PH的对称点E的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

15.如图,AB是⊙O的直径,点D是$\widehat{AE}$上一点,且∠BDE=∠CBE,BD与AE交于点F.
(1)求证:BC是⊙O的切线;
(2)若BD平分∠ABE延长ED,BA交于点P,若PA=AO,DE=2,求PD的长和⊙O的半径.

查看答案和解析>>

同步练习册答案