精英家教网 > 初中数学 > 题目详情
对于抛物线y=ax2+bx+c(a≠0),下列说法错误的是(  )
A、若顶点在x轴下方,则一元二次方程ax2+bx+c=0有两个不相等的实数根B、若抛物线经过原点,则一元二次方程ax2+bx+c=0必有一根为0C、若a•b>0,则抛物线的对称轴必在y轴的左侧D、若2b=4a+c,则一元二次方程ax2+bx+c=0,必有一根为-2
分析:A:当顶点在x轴的下方且开口向下时,此时可根据抛物线与横轴的交点个数来判断一元二次方程的解的情况;
B:当抛物线经过原点时,此时c=0,可求出一元二次方程ax2+bx+c=0的一根;
C:a与b的符合共同决定了抛物线的对称轴的位置;
D:可将方程的根代入一元二次方程求得a、b、c之间的关系.
解答:解:A:当顶点在x轴的下方且a<0时,
此时抛物线与x轴没有交点,
∴一元二次方程ax2+bx+c=0没有实数根,
∴A错误;
B:当抛物线经过原点时,c=0,
∴ax2+bx=0,
解得:x=0或x=-
c
a

∴一元二次方程ax2+bx+c=0必有一根为0,
∴B正确;
C:∵抛物线的对称轴为:x=-
b
2a

∴抛物线的对称轴的位置由与b的符合共同决定,
∴C正确;
D:令x=-2,得:4a-2b+c=0,
∴2b=4a+c,
∴D正确,
故选A.
点评:本题考查了抛物线与横轴的交点及抛物线的性质,解题时结合一元二次方程的根的情况可以得到二次函数与横轴的交点情况.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

对于抛物线y=-ax2+2ax-a(a≠0),下列叙述错误的是(  )
A、对称轴是直线x=1B、与y轴交于(0,-a)C、与x轴只有一个公共点D、函数有最大值

查看答案和解析>>

科目:初中数学 来源: 题型:

定义:对于抛物线y=ax2+bx+c(a、b、c是常数,a≠0),若b2=ac,则称该抛物线为黄金抛物线.例如:y=2x2-2x+2是黄金抛物线.
(1)请再写出一个与上例不同的黄金抛物线的解析式;
(2)若抛物线y=ax2+bx+c(a、b、c是常数,a≠0)是黄金抛物线,请探究该黄金抛物线与x轴的公共点个数的情况(要求说明理由);
(3)将(2)中的黄金抛物线沿对称轴向下平移3个单位
①直接写出平移后的新抛物线的解析式;
②设①中的新抛物线与y轴交于点A,对称轴与x轴交于点B,动点Q在对称轴上,问新抛物线上是否存在点P,使以点P、Q、B为顶点的三角形与△AOB全等?若存在,直接写出所有符合条件的点P的坐标;若不存在,请说明理由[注:第小题可根据解题需要在备用图中画出新抛物线的示意图(画图不计分)]
【提示:抛物线y=ax2+bx+c(a≠0)的对称轴是x=-
b
2a
,顶点坐标是(-
b
2a
4ac-b2
4a
)】.精英家教网

查看答案和解析>>

科目:初中数学 来源: 题型:

已知,如图,过点A、O的圆与y轴相交于一点C,与AB相交于一点E,直线AB的解析式为y=kx+4k,过点A、O的抛物线y=ax2+bx+c的顶点为P.
(1)若点C的坐标为(0,
4
3
3
),AC平分∠BAO,求点B的坐标;
(2)若AC=
2
OE,且点P在AB上,是否存在实数m,对于抛物线y=ax2+bx+c上任意一点M(x,y),都能使(x+2)2+(y-2+m)2=(y-2-m)2成立?若存在,求出m的值;若不存在,说明理由.

查看答案和解析>>

科目:初中数学 来源:2012年5月中考数学模拟试卷(46)(解析版) 题型:解答题

定义:对于抛物线y=ax2+bx+c(a、b、c是常数,a≠0),若b2=ac,则称该抛物线为黄金抛物线.例如:y=2x2-2x+2是黄金抛物线.
(1)请再写出一个与上例不同的黄金抛物线的解析式;
(2)若抛物线y=ax2+bx+c(a、b、c是常数,a≠0)是黄金抛物线,请探究该黄金抛物线与x轴的公共点个数的情况(要求说明理由);
(3)将(2)中的黄金抛物线沿对称轴向下平移3个单位
①直接写出平移后的新抛物线的解析式;
②设①中的新抛物线与y轴交于点A,对称轴与x轴交于点B,动点Q在对称轴上,问新抛物线上是否存在点P,使以点P、Q、B为顶点的三角形与△AOB全等?若存在,直接写出所有符合条件的点P的坐标;若不存在,请说明理由[注:第小题可根据解题需要在备用图中画出新抛物线的示意图(画图不计分)]
【提示:抛物线y=ax2+bx+c(a≠0)的对称轴是x=-,顶点坐标是(-)】.

查看答案和解析>>

同步练习册答案