分析 (1)求出∠E=∠DFC=90°,根据HL推理Rt△BED≌Rt△CFD,根据全等三角形的性质得出DE=DF,根据角平分线性质得出即可;
(2)根据全等三角形的判定得出Rt△AED≌Rt△AFD,根据全等三角形的性质得出AE=AF,即可得出答案.
解答 证明:(1)∵DE⊥AB,DF⊥AC,
∴∠E=∠DFC=90°,
在Rt△BED和Rt△CFD中
$\left\{\begin{array}{l}{BD=CD}\\{BE=CF}\end{array}\right.$
∴Rt△BED≌Rt△CFD(HL),
∴DE=DF,
∵DE=DF,DE⊥AB,DF⊥AC,
∴AD平分∠BAC;
(2)解:∵DE⊥AB,DF⊥AC,
∴∠E=∠DFA=90°,
在Rt△AED和Rt△AFD中
$\left\{\begin{array}{l}{AD=AD}\\{DE=DF}\end{array}\right.$
∴Rt△AED≌Rt△AFD(HL),
∴AE=AF,
∵Rt△BED≌Rt△CFD,
∴CF=BE,
∵AC=15,BE=3,
∴AB=AE-BE=AF-CF=AC-CF-CF=15-3-3=9.
点评 本题考查了全等三角形的性质和判定,角的平分线性质的应用,能灵活运用定理进行推理是解此题的关键.
科目:初中数学 来源: 题型:选择题
A. | 3π | B. | $\frac{3π}{2}$ | C. | 6π | D. | 24π |
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
售价(元/双)x | 100 | 110 | 120 | 130 | … |
日均销量(双)w | 150 | 130 | 110 | 90 | … |
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
A. | 2 | B. | 3 | C. | 4 | D. | 5 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com