精英家教网 > 初中数学 > 题目详情
如图,∠AOB=90°,点C、D分别在射线OA、OB上,CE是∠ACD的平分线,CE的反向延长线与∠CDO的平分线交于点F.
(1)当∠OCD=50°(图1),试求∠F.
(2)当C、D在射线OA、OB上任意移动时(不与点O重合)(图2),∠F的大小是否变化?若变化,请说明理由;若不变化,求出∠F.
精英家教网
分析:(1)根据三角形的内角和是180°,可求∠CDO=40°,所以∠CDF=20°,又由平角定义,可求∠ACD=130°,所以∠ECD=65°,又根据三角形的外角等于与它不相邻的两内角之和,可求∠ECD=∠F+∠CDF,∠F=45度.
(2)同理可证,∠F=45度.
解答:解:(1)∵∠AOB=90°∠OCD=50°,
∴∠CDO=40°.
∵CE是∠ACD的平分线DF是∠CDO的平分线,
∴∠ECD=65°∠CDF=20°.
∵∠ECD=∠F+∠CDF,
∴∠F=45°.

(2)不变化,∠F=45°.
∵∠AOB=90°,
∴∠CDO=90°-∠OCD∠ACD=180°-∠OCD.
∵CE是∠ACD的平分线DF是∠CDO的平分线,
∴∠ECD=90°-
1
2
∠OCD∠CDF=45°-
1
2
∠OCD.
∵∠ECD=∠F+∠CDF,
∴∠F=45°.
点评:本题考查了三角形的外角等于与它不相邻的两内角之和,以及三角形的内角和是180°的定理.题目难度由浅入深,由特例到一般,是学生练习提高的必备题.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

26、如图,∠AOB=90°,将三角尺的直角顶点落在∠AOB的平分线OC的任意一点P上,使三角尺的两条直角边与∠AOB的两边分别相交于点E、F.
(1)证明:PE=PF;
(2)若OP=10,试探索四边形PEOF的面积为定值,并求出这个定值.

查看答案和解析>>

科目:初中数学 来源: 题型:

21、如图,∠AOB=90°,点C、D分别在OA、OB上.
(1)尺规作图(不写作法,保留作图痕迹):作∠AOB的平分线OP;作过C、O、D三点的⊙E,与OP相交于F;连接CF、DF.
(2)在所画图中,△CDF是什么形状?并证明你的猜想.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•泉州)如图,∠AOB=90°,∠BOC=30°,则∠AOC=
60
60
°.

查看答案和解析>>

科目:初中数学 来源: 题型:

画图、证明:如图,∠AOB=90°,点C、D分别在OA、OB上.
(1)尺规作图(不写作法,保留作图痕迹):作∠AOB的平分线OP;作线段CD的垂直平分线EF,分别与CD、OP相交于E、F;连接CF、DF.
(2)在所画图中,求证:△CDF为等腰直角三角形.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,∠AOB=90°,∠AOC为锐角,且ON平分∠AOC,射线OM在∠BON内部.
(1)请你数一数,图中共有多少个小于平角的角.
(2)如果∠AOC=50°,∠MON=45°.
①求∠AOM的度数;
②请通过计算说明OM是否平分∠BOC.
(3)如果∠AOC=x°,∠MON=45°,OM是否平分∠BOC?请说明理由.

查看答案和解析>>

同步练习册答案