精英家教网 > 初中数学 > 题目详情
20.已知A(0,3),B(2,3)是抛物线y=-x2+bx+c上两点,该抛物线的顶点坐标是(1,4).

分析 把A、B的坐标代入函数解析式,即可得出方程组,求出方程组的解,即可得出解析式,化成顶点式即可.

解答 解:∵A(0,3),B(2,3)是抛物线y=-x2+bx+c上两点,
∴代入得:$\left\{\begin{array}{l}{c=3}\\{-4+2b+c=3}\end{array}\right.$,
解得:b=2,c=3,
∴y=-x2+2x+3
=-(x-1)2+4,
顶点坐标为(1,4),
故答案为:(1,4).

点评 本题考查了二次函数的性质,二次函数图象上点的坐标特征的应用,能求出函数的解析式是解此题的关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:选择题

10.若直线y=x+2与双曲线y=$\frac{m-3}{x}$在第二象限有两个交点,则m的取值范围是(  )
A.m>2B.m<3C.2<m<3D.m>3或m<2

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

11.如图,O是边长为4cm的正方形ABCD的中心,M是BC的中点,动点P由A开始沿折线A-B-M方向匀速运动,到M时停止运动,速度为1cm/s.设P点的运动时间为t(s),点P的运动路径与OA、OP所围成的图形面积为S(cm2),则描述面积S(cm2)与时间t(s)的关系的图象可以是(  )
A.B.C.D.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

8.国务院办公厅2015年3月16日发布了《中国足球改革的总体方案》,这是中国足球历史上的重大改革.为了进一步普及足球知识,传播足球文化,我市举行了“足球进校园”知识竞赛活动,为了解足球知识的普及情况,随机抽取了部分获奖情况进行整理,得到下列不完整的统计图表:
 获奖等次 频数 频率
 一等奖 10 0.05
 二等奖 20 0.10
三等奖 30 b
 优胜奖 a 0.30
 鼓励奖 80 0.40
请根据所给信息,解答下列问题:
(1)a=60,b=0.15,且补全频数分布直方图;
(2)若用扇形统计图来描述获奖分布情况,问获得优胜奖对应的扇形圆心角的度数是多少?
(3)在这次竞赛中,甲、乙、丙、丁四位同学都获得一等奖,若从这四位同学中随机选取两位同学代表我市参加上一级竞赛,请用树状图或列表的方法,计算恰好选中甲、乙二人的概率.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

15.关于x的一元二次方程:x2-4x-m2=0有两个实数根x1、x2,则m2($\frac{1}{{x}_{1}}+\frac{1}{{x}_{2}}$)=(  )
A.$\frac{{m}^{4}}{4}$B.$-\frac{{m}^{4}}{4}$C.4D.-4

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

5.解分式方程$\frac{1}{x-1}+1=0$,正确的结果是(  )
A.x=0B.x=1C.x=2D.无解

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

12.如图,已知⊙O的半径为2,AB为直径,CD为弦.AB与CD交于点M,将$\widehat{CD}$沿CD翻折后,点A与圆心O重合,延长OA至P,使AP=OA,连接PC
(1)求CD的长;
(2)求证:PC是⊙O的切线;
(3)点G为$\widehat{ADB}$的中点,在PC延长线上有一动点Q,连接QG交AB于点E.交$\widehat{BC}$于点F(F与B、C不重合).问GE•GF是否为定值?如果是,求出该定值;如果不是,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

9.如图,在矩形ABCD中,AB=5,BC=10$\sqrt{3}$,一圆弧过点B和点C,且与AD相切,则图中阴影部分面积为75$\sqrt{3}$-$\frac{100π}{3}$.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

10.若点M(k-1,k+1)关于y轴的对称点在第四象限内,则一次函数y=(k-1)x+k的图象不经过第一 象限.

查看答案和解析>>

同步练习册答案