精英家教网 > 初中数学 > 题目详情

【题目】已知关于x的一元二次方程x2﹣x+m=0有两个不相等的实数根.
(1)求实数m的取值范围;
(2)若方程的两个实数根为x1、x2 , 且x1+x2+x1x2=m2﹣1,求实数m的值.

【答案】
(1)解:∵方程有两个不相等的实数根,

∴△=b2﹣4ac=1﹣4m>0,

即m<


(2)解:由根与系数的关系可知:x1+x2=1,x1x2=m,

∴1+m=m2﹣1,

整理得:m2﹣m﹣2=0,

解得:m=﹣1或m=2,

∵m<

∴所求m的值为﹣1.


【解析】(1)根据方程有两个不相等的实数根,得到△=b2﹣4ac=1﹣4m>0,求出m的取值范围;(2)由根与系数的关系可知:x1+x2=1,x1x2=m,得到一元二次方程的等式,求出m的值,有(1)中(1)得到m的值.
【考点精析】根据题目的已知条件,利用根与系数的关系的相关知识可以得到问题的答案,需要掌握一元二次方程ax2+bx+c=0(a≠0)的根由方程的系数a、b、c而定;两根之和等于方程的一次项系数除以二次项系数所得的商的相反数;两根之积等于常数项除以二次项系数所得的商.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】在△ABC中,AB=AC,点D是射线CB上的一动点(不与点BC重合),以AD为一边在AD的右侧作△ADE,使AD=AE,∠DAE=∠BAC,连接CE

(1)如图1,当点D在线段CB上,且∠BAC=90°时,那么∠DCE= 度;

(2)设∠BAC= ,∠DCE=

① 如图2,当点D在线段CB上,∠BAC≠90°时,请你探究之间的数量关系,并证明你的结论;

② 如图3,当点D在线段CB的延长线上,∠BAC≠90°时,请将图3补充完整,并直接写出此时之间的数量关系(不需证明).

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,折叠边长为a的正方形ABCD,使点C落在边AB上的点M处(不与点A,B重合),点D落在点N处,折痕EF分别与边BC、AD交于点E、F,MN与边AD交于点G.证明:

(1)△AGM∽△BME;
(2)若M为AB中点,则
(3)△AGM的周长为2a.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】计算题
(1)计算:sin45°﹣cos30°tan60°
(2)解方程:x2﹣4x﹣1=0.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】一次学科测验,学生得分均为整数,满分10分,成绩达到6分以上为合格.成绩达到9分为优秀.这次测验中甲乙两组学生成绩分布的条形统计图如下:

(1)请补充完成下面的成绩统计分析表:

平均分

方差

中位数

合格率

优秀率

甲组

6.9

2.4

91.7%

16.7%

乙组

1.3

83.3%

8.3%


(2)甲组学生说他们的合格率、优秀率均高于乙组,所以他们的成绩好于乙组.但乙组学生不同意甲组学生的说法,认为他们组的成绩要高于甲组.请你给出三条支持乙组学生观点的理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,长方体的长为15宽为10,高为20,点B离点C的距离为5,一只蚂蚁如果要沿着长方体的表面从点A爬到点B,需要爬行的最短距离是(

A. 20 B. 25 C. 30 D. 32

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,ABC中边AB的垂直平分线分别交BC,AB于点D,E,AE=3cm,ADC的周长为9cm,ABC的周长是(

A. 10cm B. 12cm C. 15cm D. 17cm

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某校学生会正筹备一个“迎新年”文艺汇演活动,现准备从4名(其中两男两女)节目主持候选人中,随机选取两人担任节目主持人,请列举出所有等可能的不同的选取搭配方法,并求选出的两名主持人“恰好为一男一女”的概率.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1,在矩形纸片ABCD中,AB=3cm,AD=5cm,折叠纸片使B点落在边AD上的E处,折痕为PQ,过点EEFABPQF,连接BF.

(1)求证:四边形BFEP为菱形;

(2)当点EAD边上移动时,折痕的端点P、Q也随之移动;

①当点Q与点C重合时(如图2),求菱形BFEP的边长;

②若限定P、Q分别在边BA、BC上移动,求出点E在边AD上移动的最大距离.

查看答案和解析>>

同步练习册答案