精英家教网 > 初中数学 > 题目详情
1.如图,已知等边三角形的面积为1,O为△ABC的中心(O到△ABC的各边距离相等),将△ABC绕中心O旋转60°,得到△A′B′C′,则△ABC与△A′B′C′重叠部分的面积为$\frac{2}{3}$.

分析 根据重合部分时正六边形,连接O和正六边形的各个顶点,所得的三角形都是全等的等边三角形,据此即可求解.

解答 解:重合部分时正六边形,连接O和正六边形的各个顶点,所得的三角形都是全等的等边三角形.
则S阴影=$\frac{6}{9}$S△ABC=$\frac{6}{9}$=$\frac{2}{3}$.
故答案是:$\frac{2}{3}$.

点评 本题考查了等边三角形的性质以及旋转的性质,理解连接O和正六边形的各个顶点,所得的三角形都是全等的等边三角形是关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

14.如图,在Rt△ABC中,∠C=90°,AC=3,BC=4,点E是直角边AC上动点(点E与A、C两点均不重合),点F是斜边AB上的动点(点F与A、B两点均不重合).设AE长为x.
(1)若EF平分Rt△ABC的周长,试用含x的代数式表示AF=6-x;
(2)在(1)式的基础上,若△AEF的面积为$\frac{16}{5}$,求x的值;
(3)在(1)式的基础上,问:是否存在线段EF将Rt△ABC的周长和面积同时平分?若存在,求出此时AE的长;若不存在,说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

12.如图①,在△ABC中,∠C=90°,AC=4,BC=3,点P从点A出发,沿折线AC-CB以每秒1个单位长度的速度向终点B运动,点Q从点B山发,沿BA方向以相同速度向终点A运动,P、Q两点同时出发,当点Q到达点A时,P、Q两点同时停止运动.设△APQ的面积为S(平方单位),点Q运动的时间为t(秒).
(1)当t=1时,求PQ的长;
(2)当以A、P、Q为顶点的三角形与△ABC相似时,求t的值;
(3)求S与t之间的函数关系式;
(4)如图②,当点P在线段AC上运动时,作线段PQ的垂直平分线,直接写出PQ的垂直平分线经过△ABC顶点时t的值.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

9.如图,O是△ABC的外心,AD是BC边上的高,R是△ABC外接圆的半径.问:
(1)等式AB•AC=2R•AD成立吗?为什么?
(2)对于问题(1),你还能写出另外两种不同的解答过程吗?

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

16.在矩形ABCD中,AB=4,AD=7,P是边BC上的任意一点(P与B、C不重合),作PE⊥AP,交CD边所在于点E.
(1)判断△ABP与△PCE是否相似,并说明理由;
(2)在点P运动过程中,点E是否总在线段CD上?写出结论并说明理由;
(3)若在BC边上存在点P,使得△PEC沿PE翻折后,点C的对应点F恰好落在边AD上,求tan∠APB的值.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

6.如图,在△ABC中,中线BE与中线CD交于点G,若M为BE的中点,N为CD的中点,则$\frac{MN}{DE}$=$\frac{1}{2}$.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

13.已知,如图,正方形DEFG的一边FG在等腰△ABC的腰AC上,AB=AC=5,顶点D、E分别为边AB、BC上,△ABC的面积为10,求正方形DEFG的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

10.七年级某班有男生m人,占全班人数的55%,则该班共有学生$\frac{20}{11}$m人.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

11.如图,AB:AD=BC:DE=AC:AE.
(1)求证:∠BAD=∠CAE;
(2)若已知AB=6,BD=3,AC=4,求CE的长.

查看答案和解析>>

同步练习册答案