精英家教网 > 初中数学 > 题目详情
(2012•河南)如图,在Rt△ABC中,∠C=90°,AC=6,BC=8.把△ABC绕AB边上的点D顺时针旋转90°得到△A′B′C′,A′C′交AB于点E.若AD=BE,则△A′DE的面积是
6
6
分析:在Rt△ABC中,由勾股定理求得AB=10,由旋转的性质可知AD=A′D,设AD=A′D=BE=x,则DE=10-2x,根据旋转90°可证△A′DE∽△ACB,利用相似比求x,再求△A′DE的面积.
解答:解:Rt△ABC中,由勾股定理求AB=
AC2+BC2
=10,
由旋转的性质,设AD=A′D=BE=x,则DE=10-2x,
∵△ABC绕AB边上的点D顺时针旋转90°得到△A′B′C′,
∴∠A′=∠A,∠A′DE=∠C=90°,
∴△A′DE∽△ACB,
DE
A′D
=
BC
AC
,即
10-2x
x
=
8
6
,解得x=3,
∴S△A′DE=
1
2
DE×A′D=
1
2
×(10-2×3)×3=6,
故答案为:6.
点评:本题考查了相似三角形的判定与性质,勾股定理及旋转的性质.关键是根据旋转的性质得出相似三角形,利用相似比求解.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

(2012•河南)如图所示的几何体的左视图是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•河南)如图,在菱形ABCD中,AB=2,∠DAB=60°,点E是AD边的中点.点M是AB边上一动点(不与点A重合),延长ME交射线CD于点N,连接MD、AN.
(1)求证:四边形AMDN是平行四边形;
(2)填空:①当AM的值为
1
1
时,四边形AMDN是矩形;
           ②当AM的值为
2
2
时,四边形AMDN是菱形.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•河南)如图,已知AB是⊙O的直径,AD切⊙O于点A,
EC
=
CB
.则下列结论中不一定正确的是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•河南)如图,在△ABC中,∠C=90°,∠CAB=50°.按以下步骤作图:①以点A为圆心,小于AC的长为半径画弧,分别交AB、AC于点E、F;②分别以点E、F为圆心,大于
12
EF的长为半径画弧,两弧相交于点G;③作射线AG交BC边于点D.则∠ADC的度数为
65°
65°

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•河南)如图,在平面直角坐标系中,直线y=
12
x+1与抛物线y=ax2+bx-3交于A、B两点,点A在x轴上,点B的纵坐标为3.点P是直线AB下方的抛物线上一动点(不与A、B点重合),过点P作x轴的垂线交直线AB于点C,作PD⊥AB于点D.
(1)求a、b及sin∠ACP的值;
(2)设点P的横坐标为m.
①用含有m的代数式表示线段PD的长,并求出线段PD长的最大值;
②连接PB,线段PC把△PDB分成两个三角形,是否存在适合的m的值,直接写出m的值,使这两个三角形的面积之比为9:10?若存在,直接写出m的值;若不存在,说明理由.

查看答案和解析>>

同步练习册答案