精英家教网 > 初中数学 > 题目详情
如图1,小明将一张直角梯形纸片沿虚线剪开,得到矩形和三角形两张纸片,将△EFG的顶点G移到矩形的顶点B处,再将三角形绕点B顺时针旋转使E点落在CD边上,此时,EF恰好经过点A(如图2),
(1)求证:∠AED=∠AEB;(2)如果测得AB=5,BC=4,求FG的长.
精英家教网
分析:(1)先根据AB=BE,可知∠BAE=∠AEB,再根据矩形的性质即可得出结论;
(2)由图形旋转的性质可知BE的长,利用勾股定理的求出CE的长,利用相似三角形的性质可判定出△ADE∽△FBE,根据相似三角形的对应边成比例即可得出结论.
解答:解:(1)∵AB=BE=5,
∴∠BAE=∠AEB,(1分)
在矩形ABCD中,AB∥DC,
∴∠BAE=∠AED,(2分)
∴∠AEB=∠AED.(3分)

(2)在Rt△BCE中,BC=4,BE=5,根据勾股定理CE=
52-42
=3,
∴DE=DC-EC=2,(5分)
∵∠AEB=∠AED.∠ADE=∠EBF=90°,
∴△ADE∽△FBE,(7分)
AD
BF
=
DE
BE

即BF=
5×4
2
=10.(9分)
点评:本题考查的是相似三角形的判定与性质,图形旋转的性质、矩形的性质及勾股定理,涉及面较广,难易适中.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

如图1,小明将一张直角梯形纸片沿虚线剪开,得到矩形和三角形两张纸片,测得AB=5,AD=4.在进行如下操作时遇到了下面的几个问题,请你帮助解决.
精英家教网
(1)将△EFG的顶点G移到矩形的顶点B处,再将三角形绕点B顺时针旋转使E点落在CD边上,此时,EF恰好经过点A(如图2),请你求出△ABF的面积;
(2)在(1)的条件下,小明先将三角形的边EG和矩形边AB重合,然后将△EFG沿直线BC向右平移,至F点与B重合时停止.在平移过程中,设G点平移的距离为x,两纸片重叠部分面积为y,求在平移的整个过程中,y与x的函数关系式,并求当重叠部分面积为10时,平移距离x的值(如图3);
(3)在(2)的操作中,小明发现在平移过程中,虽然有时平移的距离不等,但两纸片重叠的面积却是相等的;而有时候平移的距离不等,两纸片重叠部分的面积也不可能相等.请探索这两种情况下重叠部分面积y的范围(直接写出结果).
精英家教网

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•宜春模拟)课题:探求直角梯形剪开后进行旋转、平移操作相关问题.如图1,小明将一张直角梯形纸片沿虚线剪开,得到矩形和三角形两张纸片,测得AB=10,AD=8.在进行如下操作时遇到了下面的几个问题,请你帮助解决.
观察计算:
(1)将△EFG的顶点G移到矩形的顶点B处,再将三角形绕点B顺时针旋转使E点落在CD边上,此时,EF恰好经过点A(如图2),请你求出AE和FG的长度.
探索发现:
(2)在(1)的条件下,小明先将三角形的边EG和矩形边AB重合,然后将△EFG沿直线BC向右平移,至F点与B重合时停止.在平移过程中,设G点平移的距离为x,两纸片重叠部分面积为y,求在平移的整个过程中,y与x的函数关系式,并求当重叠部分面积为20时,平移距离x的值(如图3).
(3)在(2)的操作中,小明发现在平移过程中,虽然有时平移的距离不等,但两纸片重叠的面积却是相等的;而有时候平移的距离不等,两纸片重叠部分的面积也不可能相等.请探索这两种情况下重叠部分面积y的范围(直接写出结果).

查看答案和解析>>

科目:初中数学 来源: 题型:

如图1,小明将一张直角梯形纸片沿虚线剪开,得到矩形和三角形两张纸片,测得AB=5,AD=4.在进行如下操作时遇到了下列几个问题,请你帮助解决.

(1)如图2,将△EFG的顶点G移到矩形的顶点B处,再将三角形绕点B顺时针旋转使E点落在CD边上,此时EF恰好经过点A.
①请证明:△ADE∽△FGE;②求出FG的长度;
(2)如图3,在(1)的条件下,小明先将△EFG的边EG和矩形的边AB重合,然后将△EFG沿直线BC向右平移,至F点与B重合时停止.在平移过程中,设G点平移的距离为x,两纸片重叠部分面积为y,求在平移的整个过程中,y与x的函数关系式.
(3)请直接写出,当重叠面积y在什么范围时,对应的平移距离x有两个值;当重叠面积y在什么范围时,相对应的平移距离x只有一个值?

查看答案和解析>>

科目:初中数学 来源:2009年江苏省淮安市中考数学模拟试卷(解析版) 题型:解答题

(2011•如东县模拟)如图1,小明将一张直角梯形纸片沿虚线剪开,得到矩形和三角形两张纸片,测得AB=5,AD=4.在进行如下操作时遇到了下面的几个问题,请你帮助解决.

(1)将△EFG的顶点G移到矩形的顶点B处,再将三角形绕点B顺时针旋转使E点落在CD边上,此时,EF恰好经过点A(如图2),请你求出△ABF的面积;
(2)在(1)的条件下,小明先将三角形的边EG和矩形边AB重合,然后将△EFG沿直线BC向右平移,至F点与B重合时停止.在平移过程中,设G点平移的距离为x,两纸片重叠部分面积为y,求在平移的整个过程中,y与x的函数关系式,并求当重叠部分面积为10时,平移距离x的值(如图3);
(3)在(2)的操作中,小明发现在平移过程中,虽然有时平移的距离不等,但两纸片重叠的面积却是相等的;而有时候平移的距离不等,两纸片重叠部分的面积也不可能相等.请探索这两种情况下重叠部分面积y的范围(直接写出结果).

查看答案和解析>>

同步练习册答案