精英家教网 > 初中数学 > 题目详情
在正方形ABCD中,点F在AD延长线上,且DF=DC,M为AB边上一点,N为MD的中点,点E在直线CF上(点E、C不重合).
(1)如图1,点M、A重合,E为CF的中点,试探究BN与NE的位置关系及
BMCE
的值,并证明你的结论;
(2)如图2,点M、A不重合,BN=NE,你在(1)中得到的两个结论是否仍然成立?若成立,加以证明;若不成立,请说明理由.
分析:(1)设正方形ABCD的边长为2a,过点E作EG⊥AF于G,先判断EG是△CDF的中位线,根据三角形的中位线平行于第三边并且等于第三边的一半可得EG=
1
2
CD=a,再求出AN=ND=DG=a,从而得到AB=NG,AN=EG,然后利用“边角边”证明△NGE和△BAN全等,根据全等三角形对应角相等可得∠1=∠2,再求出∠1+∠3=90°,从而得到BN⊥NE,根据等腰直角三角形的性质表示出CE,然后求出BM、CE的比值即可;
(2)延长BN交CD的延长线于点G,连接BE、GE,过E作EH⊥CE,交CD于点H,先利用“角角边”证明△BMN和△GDN全等,根据全等三角形对应边相等可得BM=DG,BN=GN,从而得到BN=NE=GN,然后求出∠BEG=90°,根据同角的余角相等求出∠BEC=∠GEH,再求出△CEH是等腰直角三角形,求出∠BCE=∠GHE=135°,然后利用“角边角”证明△ECB和△EHG全等,根据全等三角形对应边相等可得BE=GE,GH=BC,然后根据等腰三角形三线合一的性质可得BN⊥NE,求出CH=BM,再利用等腰直角三角形的性质求出BM、CE的比值即可.
解答:解:(1)BN与NE的位置关系是BN⊥NE,
BM
CE
=
2
.理由如下:
如图1,设正方形ABCD的边长为2a,过点E作EG⊥AF于G,则EG是△CDF的中位线,
∴EG=
1
2
CD=a,DG=
1
2
DF=
1
2
CD=a,
∵N为MD的中点,
∴AN=ND=a,
∴AB=NG=2a,AN=EG=a,
在△NGE和△BAN中,
AB=NG
∠A=∠EGN=90°
AN=EG

∴△NGE≌△BAN(SAS),
∴∠1=∠2,
∵∠2+∠3=90°,
∴∠1+∠3=90°,
∴∠BNE=180°-90°=90°,
∴BN⊥NE;
∵CD=DF,
∴△CDF是等腰直角三角形,
∴CE=
1
2
CF=
1
2
×
2
×2a=
2
a,
BM
CE
=
2a
2
a
=
2


(2)在(1)中得到的两个结论均成立.理由如下:
如图2,延长BN交CD的延长线于点G,连接BE、GE,过E作EH⊥CE,交CD于点H,
∵四边形ABCD是正方形,
∴AB∥CG,
∴∠MBN=∠DGN,∠BMN=∠GDN,
∵N为MD的中点,
∴MN=DN,
在△BMN和△GDN中,
∠MBN=∠DGN
∠BMN=∠GDN
MN=DN

∴△BMN≌△GDN(AAS),
∴MB=DG,BN=GN,
∵BN=NE,
∴BN=NE=GN,
∴∠BEG=90°,
∵EH⊥CE,
∴∠CEH=90°,
∴∠BEC+∠BEH=∠CEH=90°,
∠GEH+∠BEH=∠BEG=90°,
∴∠BEC=∠GEH,
∵DF=DC,∠CDF=90°,
∴∠DCF=45°,
∴△CEH是等腰直角三角形,
∴CE=HE,
又∵∠BCE=90°+45°=135°,
∠GHE=180°-45°=135°,
∴∠BCE=∠GHE,
在△ECB和△EHG中,
∠BEC=∠GEH
CE=HE
∠BCE=∠GHE

∴△ECB≌△EHG(ASA),
∴BE=GE,GH=BC,
∵BN=NG,
∴BN⊥NE,
∵CH=CD-DH,
BM=DG=GH-DH=BC-DH,
∴CH=BM,
BM
CE
=
CH
CE
=
2
点评:本题考查了正方形的性质,全等三角形的判定与性质,等腰三角形三线合一的性质,等腰直角三角形的判定与性质,难度较大,作辅助线构造出全等三角形与等腰直角三角形是解题的关键,也是解题的难点.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网已知:如图所示,在正方形ABCD中,E为AD的中点,F为DC上的一点,且DF=
14
DC.求证:△BEF是直角三角形.

查看答案和解析>>

科目:初中数学 来源: 题型:

18、在正方形ABCD中,点G是BC上任意一点,连接AG,过B,D两点分别作BE⊥AG,DF⊥AG,垂足分别为E,F两点,求证:△ADF≌△BAE.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•黑河)如图1,在正方形ABCD中,点M、N分别在AD、CD上,若∠MBN=45°,易证MN=AM+CN
(1)如图2,在梯形ABCD中,BC∥AD,AB=BC=CD,点M、N分别在AD、CD上,若∠MBN=
1
2
∠ABC,试探究线段MN、AM、CN有怎样的数量关系?请写出猜想,并给予证明.
(2)如图3,在四边形ABCD中,AB=BC,∠ABC+∠ADC=180°,点M、N分别在DA、CD的延长线上,若∠MBN=
1
2
∠ABC,试探究线段MN、AM、CN又有怎样的数量关系?请直接写出猜想,不需证明.

查看答案和解析>>

科目:初中数学 来源: 题型:

21、在正方形ABCD中,P为对角线BD上一点,PE⊥BC,垂足为E,PF⊥CD,垂足为F,求证:EF=AP.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在正方形ABCD中,P是CD上一点,且AP=BC+CP,Q为CD中点,求证:∠BAP=2∠QAD.

查看答案和解析>>

同步练习册答案