精英家教网 > 初中数学 > 题目详情

如图,扇形OAB的半径OA=3,圆心角∠AOB=90°,点C是弧AB上异于A、B的动点,过点C作CD⊥OA于点D,作CE⊥OB于点E,连结DE,点G、H在线段DE上,且DG=GH=HE

(1)求证:四边形OGCH是平行四边形;
(2)当点C在弧AB上运动时,在CD、CG、DG中,是否存在长度不变的线段?若存在,请求出该线段的长度;
(3)求证:是定值.

(1)连结OC,交DE于M,

∵四边形ODCE是矩形
∴OM=CM,EM=DM
又∵DG=HE
∴EM-EH=DM-DG,即HM=GM
∴四边形OGCH是平行四边形
(2)DG不变;
在矩形ODCE中,DE=OC=3,所以DG=1
(3)作HF⊥CD于点F,则△DHF∽△DEC



∵HF2=CH2-CF2=DH2-DF2,DH=2
∴CH2=2-
整理,得
="12"

解析

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

正方形OCED与扇形OAB有公共顶点0,分别以OA,0B所在直线为x轴,y轴建立平面直角坐标系.如图所示.正方形两个顶点C、D分别在x轴、y轴正半轴上移动.设OC=x,OA=3
(1)当x=1时,正方形与扇形不重合的面积是
 
;此时直线CD对应的函数关系式精英家教网
 

(2)当直线CD与扇形OAB相切时.求直线CD对应的函数关系式;
(3)当正方形有顶点恰好落在
AB
上时,求正方形与扇形不重合的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

正方形OCED与扇形OAB有公共顶点O,分别以OA、OB所在直线为x轴,y轴建立平面直角坐精英家教网标系.如图所示、正方形两个顶点C、D分别在x轴、y轴正半轴上移动、设OC=x,OA=3,则:
(1)当x=1时,正方形与扇形不重合的面积是
 

(2)当x=
 
时,直线CD与扇形OAB相切,此时切点坐标是
 

(3)当正方形有顶点恰好落在AB上时,求正方形与扇形不重合的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

正方形OCED与扇形OAB有公共顶点0,分别以OA,0B所在直线为x轴,y轴建立平面直角坐标系.如图所示.正方形两个顶点C、D分别在x轴、y轴正半轴上移动.设OC=x,OA=3
(1)当x=1时,正方形与扇形不重合的面积是______;此时直线CD对应的函数关系式是______;
(2)当直线CD与扇形OAB相切时.求直线CD对应的函数关系式;
(3)当正方形有顶点恰好落在数学公式上时,求正方形与扇形不重合的面积.

查看答案和解析>>

科目:初中数学 来源:第3章《圆》中考题集(81):3.4 弧长和扇形的面积,圆锥的侧面展开图(解析版) 题型:解答题

正方形OCED与扇形OAB有公共顶点0,分别以OA,0B所在直线为x轴,y轴建立平面直角坐标系.如图所示.正方形两个顶点C、D分别在x轴、y轴正半轴上移动.设OC=x,OA=3
(1)当x=1时,正方形与扇形不重合的面积是______;此时直线CD对应的函数关系式是______;
(2)当直线CD与扇形OAB相切时.求直线CD对应的函数关系式;
(3)当正方形有顶点恰好落在上时,求正方形与扇形不重合的面积.

查看答案和解析>>

科目:初中数学 来源:2006年福建省福州市中考数学试卷(大纲卷)(解析版) 题型:解答题

(2006•福州)正方形OCED与扇形OAB有公共顶点0,分别以OA,0B所在直线为x轴,y轴建立平面直角坐标系.如图所示.正方形两个顶点C、D分别在x轴、y轴正半轴上移动.设OC=x,OA=3
(1)当x=1时,正方形与扇形不重合的面积是______;此时直线CD对应的函数关系式是______;
(2)当直线CD与扇形OAB相切时.求直线CD对应的函数关系式;
(3)当正方形有顶点恰好落在上时,求正方形与扇形不重合的面积.

查看答案和解析>>

同步练习册答案