精英家教网 > 初中数学 > 题目详情

(10分)如图,已知△ABC是等腰三角形,顶角∠BAC=α(α<60°),D是BC边上的一点,连接AD,线段AD绕点A顺时针旋转α到AE,过点E作BC的平行线,交AB于点F,连接DE,BE,DF.

(1)求证:BE=CD;

(2)若AD⊥BC,试判断四边形BDFE的形状,并给出证明.

(1)见解析 (2)菱形

【解析】

试题分析:(1)根据条件证明可得;(2)画出较标准的图形,可猜想是菱形,通过证明△ABD≌△ABE,结合其他条件证明BD=BE=EF=FD即可.

试题解析:证明:(1)∵△ABC是等腰三角形,顶角∠BAC=α(α<60°),线段AD绕点A顺时针旋转α到AE,

∴AB=AC,

∴∠BAE=∠CAD,

在△ACD和△ABE中,

∴△ACD≌△ABE(SAS),

∴BE=CD;

(2)∵AD⊥BC,

∴BD=CD,

∴BE=BD=CD,∠BAD=∠CAD,

∴∠BAE=∠BAD,

在△ABD和△ABE中,

∴△ABD≌△ABE(SAS),

∴∠EBF=∠DBF,

∵EF∥BC,

∴∠DBF=∠EFB,

∴∠EBF=∠EFB,

∴EB=EF,

∴BD=BE=EF=FD,

∴四边形BDFE为菱形.

考点:1.图形的旋转;2.全等三角形的判定与性质;3. 菱形的判定.

考点分析: 考点1:三角形 (1)三角形的概念:由不在同一条直线上的三条线段首尾顺次相接所组成的图形叫做三角形.
组成三角形的线段叫做三角形的边.
相邻两边的公共端点叫做三角形的顶点.
相邻两边组成的角叫做三角形的内角,简称三角形的角.
(2)按边的相等关系分类:不等边三角形和等腰三角形(底和腰不等的等腰三角形、底和腰相等的等腰三角形即等边三角形).
(3)三角形的主要线段:角平分线、中线、高.
(4)三角形具有稳定性. 考点2:四边形 四边形:四边形的初中数学中考中的重点内容之一,分值一般为10-14分,题型以选择,填空,解答证明或融合在综合题目中为主,难易度为中。主要考察内容:①多边形的内角和,外角和等问题②图形的镶嵌问题③平行四边形,矩形,菱形,正方形,等腰梯形的性质和判定。突破方法:①掌握多边形,四边形的性质和判定方法。熟记各项公式。②注意利用四边形的性质进行有关四边形的证明。③注意开放性题目的解答,多种情况分析。 考点3:图形的平移与旋转 定义:
将一个图形沿某个方向移动一定的距离,这样的图形运动称为平移。平移是图形变换的一种基本形式。平移不改变图形的形状和大小,平移可以不是水平的。 平移基本性质:
经过平移,对应线段平行(或共线)且相等,对应角相等,对应点所连接的线段平行且相等;
平移变换不改变图形的形状、大小和方向(平移前后的两个图形是全等形)。
(1)图形平移前后的形状和大小没有变化,只是位置发生变化;
(2)图形平移后,对应点连成的线段平行(或在同一直线上)且相等
(3)多次连续平移相当于一次平移。
(4)偶数次对称后的图形等于平移后的图形。
(5)平移是由方向和距离决定的。
这种将图形上的所有点都按照某个方向作相同距离的位置移动,叫做图形的平移运动,简称为平移
平移的条件:确定一个平移运动的条件是平移的方向和距离。 平移的三个要点
1 原来的图形的形状和大小和平移后的图形是全等的。
2 平移的方向。(东南西北,上下左右,东偏南n度,东偏北n度,西偏南n度,西偏北n度)
3 平移的距离。(长度,如7厘米,8毫米等) 平移作用:
1.通过简单的平移可以构造精美的图形。也就是花边,通常用于装饰,过程就是复制-平移-粘贴。
2.平移长于平行线有关,平移可以将一个角,一条线段,一个图形平移到另一个位置,是分散的条件集中到一个图形上,使问题得到解决。 平移作图的步骤:
(1)找出能表示图形的关键点;
(2)确定平移的方向和距离;
(3)按平移的方向和距离确定关键点平移后的对应点;
(4)按原图的顺序,连结各对应点。 试题属性
  • 题型:
  • 难度:
  • 考核:
  • 年级:
练习册系列答案
相关习题

科目:初中数学 来源:2014-2015学年辽宁省东港市九年级九校联考数学试卷(解析版) 题型:填空题

因式分解:a-4ax+4a=_________.

查看答案和解析>>

科目:初中数学 来源:2014-2015学年江苏省盐城市盐都区西片九年级下学期第一次月考数学试卷(解析版) 题型:解答题

(本题满分10分)如图,在同一平面内,两条平行高速公路l1和l2间有一条“Z”型道路连通,其中AB段与高速公路l1成30°角,长为20km;BC段与AB、CD段都垂直,长为10km,CD段长为30km,求两高速公路间的距离(结果保留根号).

查看答案和解析>>

科目:初中数学 来源:2014-2015学年江苏省盐城市盐都区西片九年级下学期第一次月考数学试卷(解析版) 题型:选择题

已知二次函数y=ax2+4x+a-1的最小值为2,则a的值为 ( )

A.3 B.-1 C.4 D.4或-1

查看答案和解析>>

科目:初中数学 来源:2014-2015学年江苏省联盟九年级下学期第一次月考数学试卷(解析版) 题型:解答题

(14分)如图,在平面直角坐标系中,抛物线y=﹣x2+bx+c与x轴交于A、D两点,与y轴交于点B,四边形OBCD是矩形,点A的坐标为(1,0),点B的坐标为(0,4),已知点E(m,0)是线段DO上的动点,过点E作PE⊥x轴交抛物线于点P,交BC于点G,交BD于点H.

(1)求该抛物线的解析式;

(2)当点P在直线BC上方时,请用含m的代数式表示PG的长度;

(3)在(2)的条件下,是否存在这样的点P,使得以P、B、G为顶点的三角形与△DEH相似?若存在,求出此时m的值;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源:2014-2015学年江苏省联盟九年级下学期第一次月考数学试卷(解析版) 题型:填空题

某盏路灯照射的空间可以看成如图所示的圆锥,它的高AO=8米,母线AB与底面半径OB的夹角为α,tan α=,则此圆锥的侧面积是__________平方米(结果保留π).

查看答案和解析>>

科目:初中数学 来源:2014-2015学年江苏省联盟九年级下学期第一次月考数学试卷(解析版) 题型:填空题

有一组数据如下:3,a,4,6,7,它们的平均数是5,那么这组数据的方差是

查看答案和解析>>

科目:初中数学 来源:2014-2015学年江苏省无锡市九年级4月阶段检测数学试卷(解析版) 题型:解答题

(本题满分8分)

(1)解方程 (2)解不等式组

查看答案和解析>>

科目:初中数学 来源: 题型:


如图,折叠矩形OABC的一边BC,使点C落在OA边的点D处,已知折痕BE=5,且=,以O为原点,OA所在的直线为x轴建立如图所示的平面直角坐标系,抛物线l:y=﹣x2+x+c经过点E,且与AB边相交于点F.

(1)求证:△ABD∽△ODE;

(2)若M是BE的中点,连接MF,求证:MF⊥BD;

(3)P是线段BC上一点,点Q在抛物线l上,且始终满足PD⊥DQ,在点P运动过程中,能否使得PD=DQ?若能,求出所有符合条件的Q点坐标;若不能,请说明理由.

查看答案和解析>>

同步练习册答案