精英家教网 > 初中数学 > 题目详情
7.先化简,再求值:$\frac{{x}^{2}}{x+y}$-$\frac{{y}^{2}}{x+y}$,其中x=1+$\sqrt{2}$,y=1-$\sqrt{2}$.

分析 原式利用同分母分式的减法法则计算,约分得到最简结果,把x与y的值代入计算即可求出值.

解答 解:原式=$\frac{{x}^{2}-{y}^{2}}{x+y}$=$\frac{(x+y)(x-y)}{x+y}$=x-y,
∵x=1+$\sqrt{2}$,y=1-$\sqrt{2}$,
∴原式=1+$\sqrt{2}$-1+$\sqrt{2}$=2$\sqrt{2}$.

点评 此题考查了分式的化简求值,熟练掌握运算法则是解本题的关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

17.某商场经销一种儿童益智玩具,已知成批购进时的单价是50元,规定销售时单价不能低于进价,每件的利润率不能超过40%.试销过程中发现:销售单价是60元时,月销售量是400件,而销售单价每上涨1元,月销售量就减少10件.设每件玩具的销售单价为x(元)时,月销售利润为y(元).(利润=售价-进价)
(1)求y与x的函数关系式;
(2)每件玩具的销售单价为多少元时,每月能获得的利润恰好是5250元?
(3)每件玩具的销售单价为多少元时,每月能获得的利润最大?最大利润是多少?

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

18.如图所示,将矩形ABCD纸板剪出一个宽AE=5的矩形AEFD,再将它绕着中心O顺时针旋转,使其中两个顶点分别与点A和点F重合,得到矩形AMFN,再沿着直线AB向右平移使点M和点N分别落在边BC和边EF上,得到矩形GHIJ,当$\frac{AD}{AB}$=$\frac{5}{6}$时,矩形ABCD的长AB=15;宽AD=18.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

15.某开发公司研制出一种新型产品,该产品的成本价为每件2000元,批发价定为每件2600元,为了鼓励批发商经销该产品,公司决定:批发商一次批发这种产品不超过10件,每件按2600元批发;一次批发这种产品超过10件,每增加1件,所批发的产品每件均降低10元,但不低于成本价.
(1)如果批发单价不低于每件2200元,求批发商一次最多能批发这种产品多少件;
(2)如果公司在一次批发这种产品中可获利12000元,求这次批发出这种产品多少件.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

2.“中国梦”关乎每个人的幸福生活,为进一步感知我们身边的幸福,展现黄冈人追梦的风采,我市小河中学开展了以“梦想中国,逐梦黄冈”为主题的演讲大赛.为确定演讲顺序,在一个不透明的盒子中放有三张卡片,每张卡片上写有一个实数,分别为3,$\sqrt{2}$,$\sqrt{2}$+6.(卡片除了实数不同外,其余均相同),每组三位参赛学生以抽取的实数大小来决定先后顺序.
(1)从盒子中随机抽取一张卡片,请直接写出卡片上的实数是3的概率;
(2)先从盒子中随机抽取一张卡片,将卡片上的实数作为被减数;卡片不放回,再随机抽取一张卡片,将卡片上的实数作为减数,请你用列表法或树状图(树形图)法,求出两次抽取的卡片上的实数之差为有理数的概率.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

12.如图,抛物线y=-x2+bx+c经过点B(3,0),点C(0,3),D为抛物线的顶点.
(1)求抛物线的表达式;
(2)在抛物线的对称轴上找一点Q,使∠AQC=90°,求点Q的坐标;
(3)在坐标平面内找一点P,使△OCD与△CBP相似,且∠COD=∠BCP,求出所有点P的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

19.等腰△ABC的周长为10,则其腰长x的取值范围是(  )
A.x>$\frac{5}{2}$B.x<5C.$\frac{5}{2}$<x<5D.$\frac{5}{2}$≤x≤5

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

16.如图,M为正方形ABCD边AB上一点,DN⊥DM交BC的延长线于点N.求证:AM=CN.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

17.已知,如图,PA与⊙O相切于点A,过A作AB⊥OP,交⊙O于点B,垂足为H,连接OA,OB,PB.
(1)求证:PB为⊙O的切线;
(2)若OA=2,PH=4,求OP的长.

查看答案和解析>>

同步练习册答案