精英家教网 > 初中数学 > 题目详情
如图,以Rt△ABC的斜边BC为一边在△ABC的同侧作等腰Rt△BCD,如果AB=1,AD=
2
,则AC的长为(  )
分析:在AC上取一点E,使CE=AB,连接DE,证明△ABD≌△ECD就可以得出△ADE是等腰直角三角形就可以得出结论.
解答:解:在AC上取一点E,使CE=AB,连接DE.
∵∠BAC=∠BDC=90°,
∴∠AFB+∠ABF=90°,∠DFC+∠DCF=90°.
∵∠AFB=∠DFC,
∴∠ABF=∠DCE.
∵△ABC是等腰Rt△,
∴BD=CD.
在△ABD和△ECD中,
BD=CD
∠ABF=∠DCE
AB=EC

∴△ABD≌△ECD(SAS),
∴AD=ED,∠ADB=∠EDC,
∵∠BDE+∠EDC=90°,
∴∠BDE+∠ADB=90°,
∴△ADE是等腰直角三角形,
∵AD=
2

∴AE=2.
∵CE=AB=1,
∴AC=2+1=3.
故选C.
点评:本题考查了等腰直角三角形的判定及性质的运用,勾股定理的运用,全等三角形的判定及性质的运用,解答时运用截取法作辅助线是难点.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

23、如图,以Rt△ABC的直角边AB为直径的半圆O,与斜边AC交于D,E是BC边上的中点,连接ED、BD.
(1)求证:△ABC∽△BCD
(2)DE与半圆O相切吗?若相切,请给出证明;若不相切,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,以Rt△ABC各边为直径的三个半圆围成两个新月形(阴影部分),已知AC=3cm,BC=4cm.则新月形(阴影部分)的面积和是
 
cm2

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网已知,如图,以Rt△ABC的斜边AB为直径作⊙0,D是BC上的点,且有弧AC=弧CD,连CD、BD,在BD延长线上取一点E,使∠DCE=∠CBD.
(1)求证:CE是⊙0的切线;
(2)若CD=2
5
,DE和CE的长度的比为
1
2
,求⊙O半径.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,以Rt△ABC的直角边AC为直径作圆O交斜边AB于点D,若劣弧CD=120°,则
BDAD
=
3
3

查看答案和解析>>

科目:初中数学 来源: 题型:

(2009•黔南州)如图,以Rt△ABC的直角边AB为直径的半圆O,与斜边AC交于D,E是BC边上的中点,连接DE.
(1)DE与半圆0是否相切?若相切,请给出证明;若不相切,请说明理由;
(2)若AD、AB的长是方程x2-16x+60=0的两个根,求直角边BC的长.

查看答案和解析>>

同步练习册答案