精英家教网 > 初中数学 > 题目详情
精英家教网如图,直线OC、BC的函数关系式分别是y1=x和y2=-2x+6,动点P(x,0)在OB上运动(0<x<3),过点P作直线m与x轴垂直.
(1)求点C的坐标;
(2)当x为何值时,直线m平分△COB的面积?
分析:(1)首先根据直线OC、BC的函数关系式分别是y1=x和y2=-2x+6,列出方程组
y=x
y=-2x+6
,求得两直线的交点坐标.
(2)首先确定出P点的横坐标在0<x<2,进而用x表示△OPE的面积.求得x的值即为所求.
解答:解:(1)解方程组
y=x
y=-2x+6

解得
x=2
y=2

∴C点坐标为(2,2);
精英家教网

(2)如上图,作CD⊥x轴于点D,则D(2,0),
直线m平分△COB的面积,
则点P只能在线段OD上,即0<x<2,
又△COB的面积等于3,
1
2
x2 =3×
1
2

解之得x=
3

答:(1)C点坐标为(2,2);
(2)当x=
3
时,直线m平分△COB的面积
点评:本题是一次函数与三角形相结合的问题,在图形中渗透运动的观点是中考中经常出现的问题.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

如图,直线OC、BC的函数关系式分别是y1=x和y2=-2x+6,直线BC与x轴交于点B,直线BA与直线OC相精英家教网交于点A.
(1)当x取何值时y1>y2
(2)当直线BA平分△BOC的面积时,求点A的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,直线OC、BC的函数关系式分别是y1=x和y2=-2x+6,动点P(x,0)在OB上运动(0<x<3),过点P作直线m与x轴垂直.
(1)求点C的坐标,并回答当x取何值时y1>y2
(2)设△COB中位于直线m左侧部分的面积为s,求出s与x之间函数关系式.
(3)当x为何值时,直线m平分△COB的面积?

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,直线OC、BC的函数关系式分别为y=x和y=-2x+6,动点P(x,0)在OB上移动(0<x<3),过点P作直线l与x轴垂直.
(1)求点C的坐标;
(2)设△OBC中位于直线l左侧部分的面积为s,写出s与x之间的函数关系式;
(3)在直角坐标系中画出(2)中函数的图象;
(4)当x为何值时,直线l平分△OBC的面积?

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,直线OC、BC的函数关系式分别是y1=x和y2=-2x+6.
(1)求点C的坐标.
(2)当x取何值时y1>y2
(3)求△COB的面积.

查看答案和解析>>

同步练习册答案