精英家教网 > 初中数学 > 题目详情
13.【问题探究】如图1,DF∥CE,∠PCE=∠α,∠PDF=∠β,猜想∠DPC与α、β之间有何数量关系?并说明理由;
【问题迁移】
如图2,DF∥CE,点P在三角板AB边上滑动,∠PCE=∠α,∠PDF=∠β.
(1)当点P在E、F两点之间运动时,如果α=30°,β=40°,则∠DPC=70°.
(2)如果点P在E、F两点外侧运动时(点P与点A、B、E、F四点不重合),写出∠DPC与α、β之间的数量关系,并说明理由.

分析 【问题探究】延长CP交DF于A,根据平行线的性质以及三角形外角性质进行计算即可;
【问题迁移】(1)延长CP交DF于G,根据平行线的性质以及三角形外角性质进行计算即可;
(2)分两种情况进行讨论:点P在BF上,点P在AE上,分别根据平行线的性质以及三角形外角性质进行计算即可.

解答 解:【问题探究】∠DPC=α+β.
理由:如图,延长CP交DF于A,

∵DF∥CE,
∴∠PCE=∠1=α,
∵∠DPC=∠2+∠1=180°-∠APD,
∴∠DPC=∠2+∠PCE=α+β;

【问题迁移】(1)如图2,延长CP交DF于G,

∵DF∥CE,
∴∠PCE=∠G=30°,
∴∠DPC=∠G+∠GDP=30°+40°=70°,
故答案为:70;
 
(2)如图,∠DPC=β-α

∵DF∥CE,
∴∠PCE=∠1=β,
∵∠DPC=∠1-∠FDP=∠1-α.
∴∠DPC=β-α;

如图,∠DPC=α-β

∵DF∥CE,
∴∠PDF=∠1=α,
∵∠DPC=∠1-∠ACE=∠1-β.
∴∠DPC=α-β.

点评 本题主要考查了平行线的性质以及三角形外角性质的综合应用,解题时注意:三角形的一个外角等于和它不相邻的两个内角的和;两直线平行,内错角相等.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

6.(1)($\sqrt{50}$-$\sqrt{18}$)÷$\sqrt{2}$×$\frac{1}{\sqrt{2}}$
(2)4a2$\sqrt{\frac{1}{8a}}$-7$\sqrt{2{a}^{3}}$
(3)($\sqrt{5}$+5$\sqrt{2}$)(5$\sqrt{2}$-2$\sqrt{5}$)-($\sqrt{5}$-$\sqrt{2}$)2

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

6.如图,已知AD∥CB,∠A=∠C,若∠ABD=32°,求∠BDC的度数.有同学用了下面的方法.但由于一时犯急没有写完整,请你帮他添写完整.
解:∵AD∥CB(  已知  )
∴∠C+∠ADC=180° (两直线平行,同旁内角互补)
又∵∠A=∠C (已知)
∴∠A+∠ADC=180° (等量代换)
∴AB∥CD (同旁内角互补,两直线平行)
∴∠BDC=∠ABD=32° (两直线平行,内错角相等).

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

2.已知单项式3x2y3与-5x2y2的积为mx4yn,那么m-n=-20.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

9.先化简,再求值:a(a-3b)+(a+b)2-a(a-b),其中a=1,b=2.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

18.如图,已知CD平分∠ACB,DE∥AC,∠1=30°,则∠2的度数为60°.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

5.如图,AC⊥BC,AC=BC,DC⊥EC,DC=EC,BE的延长线交直线AD于点F
(1)如图1,求证:BF⊥AD;
(2)如图1,连接FC,判断FC、FE、FD之间的数量关系,并说明理由;
(3)如图2,G为AE中点,I为BD中点,若AC=BC=4,EC=CD=1,当△ABE的面积为6时,求GI的长.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

2.下面是“以已知线段为直径作圆”的尺规作图过程.
已知:如图1,线段AB.
求作:以AB为直径的⊙O.
作法:如图2,
(1)分别以A,B为圆心,大于$\frac{1}{2}$AB的长为半径
作弧,两弧相交于点C,D;
(2)作直线CD交AB于点O;
(3)以O为圆心,OA长为半径作圆.则⊙O即为所求作的.
请回答:该作图的依据是垂直平分线的判定和圆的定义.

查看答案和解析>>

科目:初中数学 来源:2017届湖北省枝江市九年级3月调研考试数学试卷(解析版) 题型:单选题

在践行社会主义核心价值观活动中,共评选出各级各类“湖北好人”45 000多名.45 000这个数用科学记数法表示为( )

A. 45×103 B. 4.5×104 . C. 4.5×105. D. 0.45×105.

查看答案和解析>>

同步练习册答案