【题目】如图,在平面直角坐标系中,抛物线y=ax2+bx+4交x轴于点A(﹣2,0)和B(B在A右侧),交y轴于点C,直线y=经过点B,交y轴于点D,且D为OC中点.
(1)求抛物线的解析式;
(2)若P是第一象限抛物线上的一点,过P点作PH⊥BD于H,设P点的横坐标是t,线段PH的长度是d,求d与t的函数关系式;
(3)在(2)的条件下,当d=时,将射线PH绕着点P顺时针方向旋转45°交抛物线于点Q,求点Q的坐标.
【答案】(1)y=﹣x2+x+4;(2)P(,);(3)Q(0,4).
【解析】试题分析:(1)首先求出点B坐标,利用待定系数法即可解决问题.
(2)设P(t,﹣t2+t+4),,由cos∠HPM=cos∠DBO,可得,由此构建二次函数,利用二次函数的性质解决问题.
(3) 过点P作PF⊥x轴于点F,过点H作HG⊥PF于点G,BD与PQ交于点N,过N作NE⊥HG于E.由全等三角形△PHG≌△HNE,的性质,(2)中函数解析式求得点P、N的坐标,然后由直线与抛物线的解析式求得交点Q的坐标.
解:(1)∵y=2kx﹣12k 经过B点,
∴当y=0,x=6,
∴B(6,0),又∵A(﹣2,0),
∴,
解得,
∴y=﹣x2+x+4.
(2)如图,过点P作PM∥y轴交BD于点M,设P(t,﹣t2+t+4),
∵CD=OD,
当x=0时y=4,
∴C(0,4)
∴OD=2,
∴D(0,2),
∴BD=2,
设直线BD解析式为y=mx+n,
∴6m+n=0,n=2,
∴yBD=﹣x+2,
∴M(t,﹣t+2),
∴PM=﹣t2+t+2,
∵∠HPM=∠DBO,
∴cos∠HPM=cos∠DBO,
∴=,
∴=,
∴d=﹣t2+t+,
∴d=﹣(t﹣)2+,
∴当t=时,PH值最大,
∴P(,).
(3)过点P作PF⊥x轴于点F,过点H作HG⊥PF于点G,BD与PQ交于点N,过N作NE⊥HG于E.
∵∠HPN=45°,PH⊥BD,
∴PH=HN,
∴△PHG≌△HNE,
∴HG=NE,PG=EH,
∵由(2)知,d=﹣t2+t+,即:d=﹣(t﹣)2+,
∴当t=时,PH=,
∴P(,).
当PH=时,HG=PG=,
∴EH=,EN=,
∴N(﹣,),P(,),
∴yPN=x+4,
由,
解得或,
∴Q(0,4).
科目:初中数学 来源: 题型:
【题目】如图,点 O 是等边△ABC 内一点,∠AOB=105°,∠BOC 等于α,将△BOC 绕点 C 按 顺时针方向旋转 60°得△ADC,连接 OD.
(1)求证:△COD 是等边三角形.
(2)求∠OAD 的度数.
(3)探究:当α为多少度时,△AOD 是等腰三角形?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,将△ABC绕点A逆时针旋转80°后得到△A′B′C′(点B的对应点是点B′,点C的对应点是点C′,连接BB′,若∠B′BC=20°,则∠BB′C′的大小是( )
A. 82° B. 80° C. 78° D. 76°
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在中,,是中线,作关于的轴对称图形.
(1)直接写出和的位置关系;
(2)连接,写出和的数量关系,并说明理由;
(3)当,时,在上找一点,使得点到点与到点的距离之和最下小,求的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】小明同学在完成第10章的学习后,遇到了一些问题,请你帮助他.
(1)图1中,当,试说明.
(2)图2中,若,则吗?请说明理由.
(3)图3中,,若,,,,则______(直接写出结果,用含x,y,z的式子表示)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在矩形ABCD中,点E为CD上一点,将△BCE沿BE翻折后点C恰好落在AD边上的点F处,过F作FH⊥BC于H,交BE于G,连接CG.
(1)求证:四边形CEFG是菱形;
(2)若AB=8,BC=10,求四边形CEFG的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】探究规律:我们有可以直接应用的结论:若两条直线平行,那么在一条直线上任取一点,无论这点在直线的什么位置,这点到另一条直线的距离均相等.例如:如图1,两直线∥,两点,在上,⊥于,⊥于,则.
如图2,已知直线∥,,为直线上的两点,.为直线上的两点.
(1)请写出图中面积相等的各对三角形: .
(2)如果,,为三个定点,点在上移动,那么无论点移动到任何位置,总有: 与的面积相等;理由是: .
解决问题:
如图3,五边形是张大爷十年前承包的一块土地的示意图,经过多年开垦荒地,现已变成如图4所示的形状,但承包土地与开垦荒地的分界小路(图4中折线)还保留着,张大爷想过点修一条直路,直路修好后,要保持直路左边的土地面积与承包时的一样多.请你用以上的几何知识,按张大爷的要求设计出修路方案.(不计分界小路与直路的占地面积)
(1)写出设计方案,并在图4中画出相应的图形;
(2)说明方案设计理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知,△ABC中,AB=AC,点E是边AC上一点,过点E作EF∥BC交AB于点F
(1)如图①,求证:AE=AF;
(2)如图②,将△AEF绕点A逆时针旋转α(0°<α<144°)得到△AE′F′.连接CE′BF′.
①若BF′=6,求CE′的长;
②若∠EBC=∠BAC=36°,在图②的旋转过程中,当CE′∥AB时,直接写出旋转角α的大小.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com