精英家教网 > 初中数学 > 题目详情

直线与抛物线只有一个交点,则a的值为

[  ]

A.a=2
B.a=10
C.a=2或a=-10
D.a=2或a=10
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网如图,二次函数y=x2+bx+c的图象经过点M(1,-2)、N(-1,6).把Rt△ABC放在坐标系内,其中∠CAB=90°,点A、B的坐标分别为(1,0)、(4,0),BC=5.将△ABC沿x轴向右平移,当点C落在抛物线上时,则△ABC平移的距离为
 
.若把△ABC沿着y轴的负方向平移距离为
 
,能使得BC所在直线与抛物线只有一个交点.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知抛物线y=-x2+bx+c与x轴的相交于点A和点B(3,0),与y轴交于点C,且S△BOC=
92
精英家教网
(1)求抛物线和直线BC的函数解析式;
(2)设P直线BC上的动点、Q是抛物线上的动点.问:是否存在以C、P、Q为顶点的三角形,使得它与△BOC相似?若存在,请直接写出线段PQ的长;若不存在,请说明理由;
(3)在上述条件下,把直线BC绕C旋转.当直线与抛物线只有一个公共点时,求OP的最小值.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•天水)如图1,已知抛物线y=ax2+bx(a≠0)经过A(3,0)、B(4,4)两点.
(1)求抛物线的解析式;
(2)将直线OB向下平移m个单位长度后,得到的直线与抛物线只有一个公共点D,求m的值及点D的坐标;
(3)如图2,若点N在抛物线上,且∠NBO=∠ABO,则在(2)的条件下,求出所有满足△POD∽△NOB的点P坐标(点P、O、D分别与点N、O、B对应).

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•昭通)如图1,已知A(3,0)、B(4,4)、原点O(0,0)在抛物线y=ax2+bx+c (a≠0)上.
(1)求抛物线的解析式.
(2)将直线OB向下平移m个单位长度后,得到的直线与抛物线只有一个交点D,求m的值及点D的坐标.
(3)如图2,若点N在抛物线上,且∠NBO=∠ABO,则在(2)的条件下,求出所有满足△POD∽△NOB的点P的坐标(点P、O、D分别与点N、O、B对应)

查看答案和解析>>

科目:初中数学 来源:2013年云南省昭通市中考数学试卷(解析版) 题型:解答题

如图1,已知A(3,0)、B(4,4)、原点O(0,0)在抛物线y=ax2+bx+c (a≠0)上.
(1)求抛物线的解析式.
(2)将直线OB向下平移m个单位长度后,得到的直线与抛物线只有一个交点D,求m的值及点D的坐标.
(3)如图2,若点N在抛物线上,且∠NBO=∠ABO,则在(2)的条件下,求出所有满足△POD∽△NOB的点P的坐标(点P、O、D分别与点N、O、B对应)

查看答案和解析>>

同步练习册答案