精英家教网 > 初中数学 > 题目详情
如图①,若二次函数的图象与x轴交于点A(-2,0),B(3,0)两点,点A关于正比例函数的图象的对称点为C。
(1)求b、c的值;
(2)证明:点C 在所求的二次函数的图象上;
(3)如图②,过点B作DB⊥x轴交正比例函数的图象于点D,连结AC,交正比例函数的图象于点E,连结AD、CD。如果动点P从点A沿线段AD方向以每秒2个单位的速度向点D运动,同时动点Q从点D沿线段DC方向以每秒1个单位的速度向点C运动,当其中一个到达终点时,另一个随之停止运动,连结PQ、QE、PE,设运动时间为t秒,是否存在某一时刻,使PE平分∠APQ,同时QE平分∠PQC,若存在,求出t的值;若不存在,请说明理由。
(1)
(2)利用轴对称和锐角三角函数求出点C的坐标,代入验证即可。
(3)存在时刻,使PE平分∠APQ,同时QE平分∠PQC。

分析:(1)将A(-2,0),B(3,0)两点坐标 代入,即可求出b、c的值。
(2)利用轴对称和锐角三角函数求出点C的坐标,代入验证即可。
(3)通过证明△PAE∽△ECQ,求出时间t。
解:(1)∵二次函数的图象与x轴交于点A(-2,0),B(3,0)两点,
,解得

(2)证明:由(1)得二次函数解析式为
在正比例函数的图象上取一点F,作FH⊥x轴于点H,则
。∴
连接AC交 的图象于点E,作CK 垂直x轴于点K,

∵点A关于的图象的对称点为C,
∴OE垂直平分AC。
,OA=2,

在Rt△ACK中,∵
。∴
∴点C 的坐标为
将C 代入,左边=右边,
∴点C在所求的二次函数的图象上。
(3)∵DB⊥x轴交的图象于点D,B(3,0),

∴把x=3代入,即BD=
在Rt△ACK中,
∵OE垂直平分AC,

假设存在某一时刻,使PE平分∠APQ,同时QE平分∠PQC,

, ∴
又∵,∴
又∵,∴△PAE∽△ECQ。∴,即
整理,得,解得(不合题意,舍去)。
∴存在时刻,使PE平分∠APQ,同时QE平分∠PQC。
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

(2013年四川攀枝花12分)如图,抛物线y=ax2+bx+c经过点A(﹣3,0),B(1.0),C(0,﹣3).

(1)求抛物线的解析式;
(2)若点P为第三象限内抛物线上的一点,设△PAC的面积为S,求S的最大值并求出此时点P的坐标;
(3)设抛物线的顶点为D,DE⊥x轴于点E,在y轴上是否存在点M,使得△ADM是直角三角形?若存在,请直接写出点M的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

在平面直角坐标系xOy中,矩形ABCO的顶点A、C分别在y轴、x轴正半轴上,点P在AB上,PA=1,AO=2.经过原点的抛物线的对称轴是直线x=2.

(1)求出该抛物线的解析式.
(2)如图1,将一块两直角边足够长的三角板的直角顶点放在P点处,两直角边恰好分别经过点O和C.现在利用图2进行如下探究:
①将三角板从图1中的位置开始,绕点P顺时针旋转,两直角边分别交OA、OC于点E、F,当点E和点A重合时停止旋转.请你观察、猜想,在这个过程中,的值是否发生变化?若发生变化,说明理由;若不发生变化,求出的值.
②设(1)中的抛物线与x轴的另一个交点为D,顶点为M,在①的旋转过程中,是否存在点F,使△DMF为等腰三角形?若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,已知二次函数的图象过点A(0,﹣3),B(),对称轴为直线,点P是抛物线上的一动点,过点P分别作PM⊥x轴于点M,PN⊥y轴于点N,在四边形PMON上分别截取PC=MP,MD=OM,OE=ON,NF=NP.

(1)求此二次函数的解析式;
(2)求证:以C、D、E、F为顶点的四边形CDEF是平行四边形;
(3)在抛物线上是否存在这样的点P,使四边形CDEF为矩形?若存在,请求出所有符合条件的P点坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

我们知道,经过原点的抛物线解析式可以是
(1)对于这样的抛物线:
当顶点坐标为(1,1)时,a=       
当顶点坐标为(m,m),m≠0时,a 与m之间的关系式是       
(2)继续探究,如果b≠0,且过原点的抛物线顶点在直线上,请用含k的代数式表示b;
(3)现有一组过原点的抛物线,顶点A1,A2,…,An在直线上,横坐标依次为1,2,…,n(n为正整数,且n≤12),分别过每个顶点作x轴的垂线,垂足记为B1,B2,B3,…,Bn,以线段AnBn为边向右作正方形AnBnCnDn,若这组抛物线中有一条经过点Dn,求所有满足条件的正方形边长。

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

如图,在平面直角坐标系中,抛物线所表示的函数解析式为y=﹣2(x﹣h)2+k,则下列
结论正确的是
A.h>0,k>0B.h<0,k>0C.h<0,k<0 D.h>0,k<0

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

下列二次函数的图象,不能通过函数y=3x2的图象平移得到的是
A.y=3x2+2B.y=3(x﹣1)2
C.y=3(x﹣1)2+2D.y=2x2

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

抛物线的顶点坐标是(     )
A.(0,1)B.(0,一1)C.(1,0)D.(一1,0)

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

已知二次函数为常数),当取不同的值时,其图象构成一个“抛物线系”.下图分别是当时二次函数的图象.它们的顶点在一条直线上,这条直线的解析式是__________________.

查看答案和解析>>

同步练习册答案