精英家教网 > 初中数学 > 题目详情
已知在△ABC中,AB=AC=6,且△ABC的面积是12.
(1)①在图1中,求BD的长.②在图2中,P是BC的中点,求PM+PN.
(2)图3中,对于BC边上任意一点P,请对点P到两腰距离和(PM+PN)与腰上高(CQ)的大小关系提出猜想,并加以证明.
(3)如图4,在矩形ABCD中,P是CD边任意一点,AD=3,CD=4,请直接写出P到BD、AC的距离和PM+PN.
精英家教网
分析:(1)①根据三角形的面积公式列式即可求解,②连接AP,把△ABC分成两个三角形,△APB与△APC,然后利用△ABC的面积的两种不同表示即可得解;
(2)连接AP,把△ABC分成两个三角形,△APB与△APC,然后利用△ABC的面积=△APB的面积+△APC的面积,又AB=AC,整理即可得解;
(3)连接OP,过点D作DE⊥AC,垂足为E,根据(2)中的结论PM+PN=DE,利用勾股定理求出AC的长度,再利用△ACD的面积求出DE的长度,即可得解.
解答:解:(1)①△ABC的面积=
1
2
×AC×BD,
1
2
×6×BD=12,
解得BD=4,
②连接AP,则△ABC的面积=△APB的面积+△APC的面积,
1
2
×AC×BD=
1
2
×AB×PM+
1
2
×AC×PN,
∵AB=AC,
∴BD=PM+PN,
∴PM+PN=4;
精英家教网
(2)PM+PN=CQ.
理由如下:连接AP,则△ABC被分成△APB与△APC,
∴△ABC的面积=△APB的面积+△APC的面积,
1
2
×AC×CQ=
1
2
×AB×PM+
1
2
×AC×PN,
∵AB=AC,
∴PM+PN=CQ;

(3)过D作DE⊥AC,垂足为E,根据(2)的结论得,PM+PN=DE,
∵AD=3,CD=4,
∴AC=
AD2+CD2
=
32+42
=5,
S△ABC=
1
2
×AD×CD=
1
2
×AC×DE,
1
2
×3×4=
1
2
×5×DE,
解得DE=
12
5

∴PM+PN=
12
5
点评:本题考查了矩形的性质,等腰三角形的性质,利用三角形的面积公式列出算式并整理是解题的关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

已知在△ABC中,AB=AC=5,BC=8,点G为重心,那么GA=
 

查看答案和解析>>

科目:初中数学 来源: 题型:

22、如图,已知在△ABC中,∠A=(2x+10)°,∠B=(3x)°,∠ACD是△ABC的一个外角,且∠ACD=(6x-10)°,求∠A的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知在△ABC中,∠BAC=90°,AC=4,BC=4
5
,若点D、E、F分别为AB、BC、AC边的中点,点P为AB边上的一个动点(且不与点A、B重合),PQ∥AC,且交BC于点Q,以PQ为一边在点B的异侧作正方形PQMN,设正方形PQMN与矩形ADEF的公共部分的面积为S,BP的长为x,试求S与x之间的函数关系式.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,已知在△ABC中,∠BAC为直角,AB=AC,D为AC上一点,CE⊥BD于E.若BD平分∠ABC.
求证:CE=
12
BD.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知在△ABC中,∠B与∠C的平分线交于点P.
(1)当∠A=70°时,求∠BPC的度数;
(2)当∠A=112°时,求∠BPC的度数;
(3)当∠A=α时,求∠BPC的度数.

查看答案和解析>>

同步练习册答案